OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 8 — Aug. 10, 2007

Single Particle Fluorescence: A Simple Experimental Approach to Evaluate Coincidence Effects

Xihong Wu, Nicoló Omenetto, Benjamin W. Smith, and James D. Winefordner

Applied Spectroscopy, Vol. 61, Issue 7, pp. 711-718 (2007)

View Full Text Article

Acrobat PDF (668 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Real-time characterization of the chemical and physical properties of individual aerosol particles is an important issue in environmental studies. A well-established way of accomplishing this task relies on the use of laser-induced fluorescence or laser ionization mass spectrometry. We describe here a simple approach aimed at experimentally verifying that single particles are indeed addressed. The approach has been tested with a system consisting of a series of aerodynamic lenses to form a beam of dye-doped particles aerosolized from a solution of known concentration with a medical nebulizer. Two independent spectral detection channels simultaneously measure the fluorescence signals generated in two different spectral regions by the passage of a mixture of two dye-doped particles through a focused laser beam in a vacuum chamber. Coincidence effects, arising from the simultaneous observation of both fluorescence emissions, can then be directly observed. Both dual-color fluorescence and pulse height distribution have been analyzed. As expected, the probability of single- or multiple-particle interaction strongly depends on the particle flux in the chamber, which is related to the concentration of particles in the nebulized solution. In our case, to achieve a two-particle coincidence smaller than 10%, a particle concentration lower than 1.2 × 105 particles/mL is required. Moreover, it was found that the experimental observations are in agreement with a simple mathematical model based on Poisson statistics. Although the results obtained refer to particle concentrations in solution, our approach can equally be applicable to experiments involving direct air sampling, provided that the number density of particles in air can be measured a priori, e.g., with a particle counter.

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Xihong Wu, Nicoló Omenetto, Benjamin W. Smith, and James D. Winefordner, "Single Particle Fluorescence: A Simple Experimental Approach to Evaluate Coincidence Effects," Appl. Spectrosc. 61, 711-718 (2007)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited