Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 61,
  • Issue 8,
  • pp. 873-881
  • (2007)

Two-Dimensional Correlation Analysis of Polyimide Films using Attenuated Total Reflection-Based Dynamic Compression Modulation Step-Scan Fourier Transform Infrared Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Attenuated total reflection (ATR)-based dynamic compression modulation two-dimensional (2D) correlation study of poly(p-phenylene biphenyltetracarboximide) film is carried out in combination with spectral simulation analysis by density functional theory (DFT). The dynamic 2D infrared (IR) correlation spectra in the region of imide I (C=O stretching mode) show three distinct correlation peaks located around 1777, 1725, and 1708 cm<sup>−1</sup>. The band at 1708 cm<sup>−1</sup> is the lower wavenumber shift component of 1777 or 1735 cm<sup>−1</sup> peaks and is attributed to the results from intermolecular interactions, according to the DFT analysis. The 1708 cm<sup>−1</sup> band also shows the largest dynamic response, suggesting that these intermolecular interactions may enhance the dynamic response. The dynamic 2D IR correlation spectra in the region of imide II (C–N–C axial stretching mode) vibrations also show three correlation peaks located around 1335, 1355, and 1370 cm<sup>−1</sup>, although the imide II band is shown to consist substantially of one component by the DFT analysis. These multiple peaks may be attributed to the compression-induced wavenumber shift of the band in the backbone structures. The sequential analysis of 2D correlation data show that, upon applying the dynamic compression, the response of the backbone regions (imide II) occurs first, followed by that of the side-chain regions (imide I, C=O).

PDF Article
More Like This
Use of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the development of lipid aggregate structures

Mateo R. Hernandez, Elyse N. Towns, Terry C. Ng, Brian C. Walsh, Richard Osibanjo, Atul N. Parikh, and Donald P. Land
Appl. Opt. 51(15) 2842-2846 (2012)

Reflection optical two-dimensional Fourier-transform spectroscopy

Hebin Li, Galan Moody, and Steven T. Cundiff
Opt. Express 21(2) 1687-1692 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.