OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 10 — Oct. 31, 2007

Calibration of Probe Volume in Fluorescence Correlation Spectroscopy

Yi Gao, Zhenming Zhong, and M. Lei Geng

Applied Spectroscopy, Vol. 61, Issue 9, pp. 956-962 (2007)

View Full Text Article

Acrobat PDF (246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In fluorescence correlation spectroscopy (FCS), an accurate evaluation of the probe volume is the basis of correct interpretation of experimental data and solution of an appropriate diffusion model. Poor fitting convergence has been a problem in the determination of the dimensional parameters, the beam radius, ω, and the distance along the optical axis of the probe volume, l. In this work, the instability of fitting during the calibration process is investigated by examining the χ2 surfaces. We demonstrate that the minimum of χ2 in the ω dimension is well defined for both converging and diverging data. The difficulty of fitting comes from the l dimension. The uncertainty in l could be significantly larger than that in ω, as determined by F-statistics. A modified calibration process is recommended based on examining two data treatment methods, combining several short data sets into a single long run and averaging the correlation functions of several short data sets. It is found that by using the mean of several converging correlation functions from short data sets instead of a long time correlation, more stable and consistent dimensional parameters are extracted to define the probe volume.

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Yi Gao, Zhenming Zhong, and M. Lei Geng, "Calibration of Probe Volume in Fluorescence Correlation Spectroscopy," Appl. Spectrosc. 61, 956-962 (2007)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited