OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 11 — Oct. 22, 2008

Crystallinity of Bamboo-Based Carbon Filaments for Incandescent Lamps Examined by Raman Spectroscopy as a Nondestructive Means of Analysis

Hideki Ohkawa, Yoji Yuge, Hiroshi Kamata, Ryotaro Matsuda, Yasuo Ito, Akira Miura, and Junichi Tonotani

Applied Spectroscopy, Vol. 62, Issue 9, pp. 984-991 (2008)


View Full Text Article

Acrobat PDF (755 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The crystallinities of bamboo-based carbon filaments have been examined by Raman spectroscopy as a nondestructive means of analysis of the historical lamp (ca. 1890s) manufactured by Ichisuke Fujioka of Japan, and the results have been compared with results from the study of Edison's lamp (ca. 1889) and replica lamps produced in 1979. The crystallinities for the three carbon filaments have been evaluated in terms of the intensity ratio ID/IG, where ID is the intensity at 1350 cm−1 for the D band originating from the defect of graphite and IG is the intensity at 1585 cm−1 for the G band due to the stretching vibration of graphite layers. The ratios obtained are 0.3–0.4, 0.28–0.3, and 0.25–0.28 for the Fujioka, Edison, and replica lamps, respectively. The Raman spectrum of the bamboo-based carbon filament produced by thermal pyrolysis at 1273 K in a nitrogen atmosphere is significantly different from those of filaments inside the incandescent lamps. The raw bamboo filament was analyzed by ultraviolet (UV) Raman spectroscopy using an excitation wavelength of 325 nm from a HeCd laser to avoid the strong interference due to photoluminescence. An intense peak at 1585 cm−1 was recognized, which was ascribed to the C=C bond vibration for the lignin component in the bamboo. The upper shift of the D band for the carbon filament pyrolyzed at 1273 K was confirmed by varying the excitation wavelength at 514.5 nm to 325 nm, and this behavior was interpreted on the basis of the double resonance Raman scattering mechanism.

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Hideki Ohkawa, Yoji Yuge, Hiroshi Kamata, Ryotaro Matsuda, Yasuo Ito, Akira Miura, and Junichi Tonotani, "Crystallinity of Bamboo-Based Carbon Filaments for Incandescent Lamps Examined by Raman Spectroscopy as a Nondestructive Means of Analysis," Appl. Spectrosc. 62, 984-991 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=as-62-9-984

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited