Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 63,
  • Issue 1,
  • pp. 6-13
  • (2009)

Spectroscopic Imaging for Detection and Discrimination of Different E. coli Strains

Not Accessible

Your library or personal account may give you access

Abstract

Food contaminations with <i>E. coli</i> bacteria are a major concern for public health. Current techniques for detection are based on sample extractions, time-consuming sample preparations, and labor intensive analyses. Because some strains can be toxic at a level of tens of bacteria and some are not harmful at all, a method of colony localization and strain classification must be developed. In this study we present first results that are based on Fourier transform infrared (FT-IR) spectroscopy and FT-IR imaging. Due to the chemical similarity of different <i>E. coli</i> strains, the acquired spectra show a strong resemblance. It is demonstrated here that based on a correlation analysis samples of the same strain are classified as such and that different strains can be discriminated. The next step is to move from single-spot analyses towards spectroscopic imaging—a technique that facilitates detection of localized bacteria colonies. However, the sheer amount of data acquired in short periods of time prevents many chemical imaging techniques from being feasible for online sensing or for screening extended areas. To improve the time resolution, a data compression approach based on three-dimensional wavelet compression has been applied. It is shown that even with slight compression computation times can be cut down by over an order of magnitude while preserving enough information for localization and classification.

PDF Article
More Like This
Sensitive and specific discrimination of pathogenic and nonpathogenic Escherichia coli using Raman spectroscopy—a comparison of two multivariate analysis techniques

Khozima Hamasha, Qassem I. Mohaidat, Russell A. Putnam, Ryan C. Woodman, Sunil Palchaudhuri, and Steven J. Rehse
Biomed. Opt. Express 4(4) 481-489 (2013)

Optical fiber immunosensors based on surface plasmon resonance for the detection of Escherichia coli

Sandro C. Oliveira, Simone Soares, Andreia C. M. Rodrigues, Bárbara V. Gonçalves, Amadeu M. V. M. Soares, Nuno Santos, Santosh Kumar, Pedro Almeida, and Carlos Marques
Opt. Express 32(6) 10077-10092 (2024)

Convective-diffusion-based fluorescence correlation spectroscopy for detection of a trace amount of E. coli in water

De-Kui Qing, M. Pinar Mengüç, Fred A. Payne, and Mary-Grace C. Danao
Appl. Opt. 42(16) 2987-2994 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved