OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 12 — Nov. 10, 2009

In Situ Evaluation of Net Nitrification Rate in Terra Rossa Soil Using a Fourier Transform Infrared Attenuated Total Reflection 15N Tracing Technique

Du Changwen, Raphael Linker, Avi Shaviv, and Zhou Jianmin

Applied Spectroscopy, Vol. 63, Issue 10, pp. 1168-1173 (2009)


View Full Text Article

Acrobat PDF (336 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Nitrification and mineralization of organic nitrogen (N) are important N transformation processes in soil, and mass spectrometry is a suitable technique for tracing changes of 15N isotopic species of mineral N and estimating the rates of these processes. However, mass spectrometric methods for tracing N dynamics are costly, time consuming, and require long and laborious preparation procedures. This study investigates mid-infrared attenuated total reflection (ATR) spectroscopy as an alternative method for detecting changes in 14NO3–N and 15NO3–N concentrations. There is a significant shift of the ν3 absorption band of nitrate according to N species, namely from the 1275 to 1460 cm−1 region for 14NO3 to the 1240–1425 cm−1 region for 15NO3. This shift makes it possible to quantify the N isotopes using multivariate calibration methods. Partial least squares regression (PLSR) models with five factors yielded a determination error of 6.7–9.2 mg N L−1 for aqueous solutions and 5.9–7.8 mg N kg−1 (dry soil) for pastes of a Terra rossa soil. These PLSR models were used to monitor the changes of 15NO3–N and 14NO3–N content in the same Terra rossa soil during an incubation experiment in which [15NH4]2SO4 was applied to the soil, allowing the estimation of the contributions of applied N and mineralized N to the net nitrification rate, the potential losses of the applied 15NH4–N, and the net mineralization of soil organic N.

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Du Changwen, Raphael Linker, Avi Shaviv, and Zhou Jianmin, "In Situ Evaluation of Net Nitrification Rate in Terra Rossa Soil Using a Fourier Transform Infrared Attenuated Total Reflection 15N Tracing Technique," Appl. Spectrosc. 63, 1168-1173 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=as-63-10-1168


Sort:  Journal  |  Reset

References

References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited