OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Measuring the Micro-Polarity and Hydrogen-Bond Donor/Acceptor Ability of Thermoresponsive N-Isopropylacrylamide/N-tert-Butylacrylamide Copolymer Films Using Solvatochromic Indicators

Boguslaw Szczupak, Alan G. Ryder, Denisio M. Togashi, Yuri A. Rochev, Alexander V. Gorelov, and Thomas J. Glynn

Applied Spectroscopy, Vol. 63, Issue 4, pp. 442-449 (2009)


View Full Text Article

Acrobat PDF (327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Thin polymer films are important in many areas of biomaterials research, biomedical devices, and biological sensors. The accurate in situ measurement of multiple physicochemical properties of thin polymer films is critical in understanding biocompatibility, polymer function, and performance. In this work we demonstrate a facile spectroscopic methodology for accurately measuring the micro-polarity and hydrogen-bond donor/acceptor ability for a series of relatively hydrophilic thermoresponsive copolymers. The micro-polarity of the N-isopropylacrylamide (NIPAM) and N-tert-butylacrylamide (NtBA) co-polymers was evaluated by means of the ET(30), α, β, and π* empirical solvatochromic polarity parameters. The data shows that increasing the NtBA fraction in the dry copolymer film reduces polarity and hydrogen-bonding ability. Within the Kamlet–Taft polarity framework, the NIPAM/NtBA copolymer films are strong hydrogen-bond acceptors, strongly dipolar/polarizable, and rather moderate hydrogen-bond donors. This characterization provides a more comprehensive physicochemical description of polymers, which aids the interpretation of film performance. Comparison of the measured ET(30) values with literature data for other water-soluble polymers show that dry NIPAM/NtBA copolymers are slightly more polar than poly(ethylene oxide), less polar than polyvinylalcohol, and approximately the same polarity as poly(N-vinyl-2-pyrrolidone). These findings indicate that this spectroscopic method is a facile, rapid, and nondestructive methodology for measuring polymer properties in situ, suitable for most biomaterials research laboratories.

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Boguslaw Szczupak, Alan G. Ryder, Denisio M. Togashi, Yuri A. Rochev, Alexander V. Gorelov, and Thomas J. Glynn, "Measuring the Micro-Polarity and Hydrogen-Bond Donor/Acceptor Ability of Thermoresponsive N-Isopropylacrylamide/N-tert-Butylacrylamide Copolymer Films Using Solvatochromic Indicators," Appl. Spectrosc. 63, 442-449 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=as-63-4-442


Sort:  Journal  |  Reset

References

References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited