Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 65,
  • Issue 10,
  • pp. 1170-1180
  • (2011)

Solid-State Digital Micro-Mirror Array Spectrometer for Hadamard Transform Measurements of Glucose and Lactate in Aqueous Solutions

Not Accessible

Your library or personal account may give you access

Abstract

A novel solid-state near-infrared spectrometer is presented based on a digital micro-mirror array device (DMD) that is well designed for Hadamard transform spectroscopy. This spectrometer is designed for the collection of transmission spectra over the C–H first overtone region of the near-infrared spectrum (6500–5500 cm<sup>−1</sup>). A spectral resolution of 2.2 nm (∼11 cm<sup>−1</sup>) is realized by using a 25 μm diameter linear tungsten filament as the source. Such a thin filament reduces imaging aberrations into the micro-mirror array, thereby enhancing spectral resolution. After passing through the sample, the transmitted radiation is dispersed with a grating before being imaged onto the surface of the DMD. Hadamard transform masks are implemented through the DMD and the reflected light is monitored by a single-element photodiode detector. The analytical utility of this approach is demonstrated through the multivariate quantification of glucose and lactate in binary mixtures composed in an aqueous buffer solution. A signal-to-noise ratio of 35 000 is achieved through these aqueous samples, and the resulting quantitative measurements provide a standard error of prediction of 1.4 and 0.9 mM for glucose and lactate, respectively. The selectivity of the resulting calibration models is established by using both a pure component selectivity analysis as well as analysis of the net analyte signal for each component. These quantitative results from the DMD Hadamard transform spectrometer compare favorably to similar measurements performed with a commercial Fourier transform spectrometer.

PDF Article
More Like This
Signal-to-noise ratio enhancement of a Hadamard transform spectrometer using a two-dimensional slit-array

Mingbo Chi, Yihui Wu, Fang Qian, Peng Hao, Wenchao Zhou, and Yongshun Liu
Appl. Opt. 56(25) 7188-7193 (2017)

Design of a mechanical-tunable filter spectrometer for noninvasive glucose measurement

Vidi Saptari and Kamal Youcef-Toumi
Appl. Opt. 43(13) 2680-2688 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved