Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 66,
  • Issue 8,
  • pp. 875-881
  • (2012)

Depth Profiling for the Identification of Unknown Substances and Concealed Content at Remote Distances Using Time-Resolved Stand-Off Raman Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Time-resolved stand-off Raman spectroscopy was used to determine both the position and identity of substances relative to each other at remote distances (up to tens of meters). Spectral information of three xylene isomers, toluene, and sodium chlorate was obtained at a distance of 12 m from the setup. Pairs and triplets of these samples were placed at varying distances (10-60 cm) relative to each other. Via the photon time of flight the distance between the individual samples was determined to an accuracy of 7% (corresponding to a few cm) of the physically measured distance. Furthermore, at a distance of 40 m, time-resolved Raman depth profiling was used to detect sodium chlorate in a white plastic container that was non-transparent to the human eye. The combination of the ranging capabilities of Raman LIDAR (sample location usually determined using prior knowledge of the analyte of interest) with stand-off Raman spectroscopy (analyte detection at remote distances) provides the capability for depth profile identification of unknown substances and analysis of concealed content in distant objects. To achieve these results, a 532 nm laser with a pulse length of 4.4 ns was synchronized to an intensified charge-coupled device camera with a minimum gate width of 500 ps. For automated data analysis a multivariate curve resolution algorithm was employed.

PDF Article
More Like This
Stand-off detection of explosives particles by multispectral imaging Raman spectroscopy

Henric Östmark, Markus Nordberg, and Torgny E. Carlsson
Appl. Opt. 50(28) 5592-5599 (2011)

Stand-off Raman spectrometer for identification of liquids in a pressurized gas pipelines

Michael Foster, Jonathan Storey, Paul Stockwell, and David Widdup
Opt. Express 23(3) 3027-3034 (2015)

Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy

Ryunosuke Kitamura, Tetsuya Inagaki, and Satoru Tsuchikawa
Opt. Express 24(4) 3999-4009 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.