OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 5 — Jun. 6, 2013

Principles, Performance, and Applications of Spectral Reconstitution (SR) in Quantitative Analysis of Oils by Fourier Transform Infrared Spectroscopy (FT-IR)

Diego L. García-González, Jacqueline Sedman, and Frederik R. van de Voort

Applied Spectroscopy, Vol. 67, Issue 4, pp. 448-456 (2013)


View Full Text Article

Acrobat PDF (412 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Spectral reconstitution (SR) is a dilution technique developed to facilitate the rapid, automated, and quantitative analysis of viscous oil samples by Fourier transform infrared spectroscopy (FT-IR). This technique involves determining the dilution factor through measurement of an absorption band of a suitable spectral marker added to the diluent, and then spectrally removing the diluent from the sample and multiplying the resulting spectrum to compensate for the effect of dilution on the band intensities. The facsimile spectrum of the neat oil thus obtained can then be qualitatively or quantitatively analyzed for the parameter(s) of interest. The quantitative performance of the SR technique was examined with two transition-metal carbonyl complexes as spectral markers, chromium hexacarbonyl and methylcyclopentadienyl manganese tricarbonyl. The estimation of the volume fraction (VF) of the diluent in a model system, consisting of canola oil diluted to various extents with odorless mineral spirits, served as the basis for assessment of these markers. The relationship between the VF estimates and the true volume fraction (VFt) was found to be strongly dependent on the dilution ratio and also depended, to a lesser extent, on the spectral resolution. These dependences are attributable to the effect of changes in matrix polarity on the bandwidth of the ν(CO) marker bands. Excellent VFt estimates were obtained by making a polarity correction devised with a variance-spectrum-delineated correction equation. In the absence of such a correction, SR was shown to introduce only a minor and constant bias, provided that polarity differences among all the diluted samples analyzed were minimal. This bias can be built into the calibration of a quantitative FT-IR analytical method by subjecting appropriate calibration standards to the same SR procedure as the samples to be analyzed. The primary purpose of the SR technique is to simplify preparation of diluted samples such that only approximate proportions need to be adhered to, rather than using exact weights or volumes, the marker accounting for minor variations. Additional applications discussed include the use of the SR technique in extraction-based, quantitative, automated FT-IR methods for the determination of moisture, acid number, and base number in lubricating oils, as well as of moisture content in edible oils.

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Diego L. García-González, Jacqueline Sedman, and Frederik R. van de Voort, "Principles, Performance, and Applications of Spectral Reconstitution (SR) in Quantitative Analysis of Oils by Fourier Transform Infrared Spectroscopy (FT-IR)," Appl. Spectrosc. 67, 448-456 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=as-67-4-448

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited