OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 7 — Aug. 1, 2013

Sparse Methods in Spectroscopy: An Introduction, Overview, and Perspective

Erik Andries and Shawn Martin

Applied Spectroscopy, Vol. 67, Issue 6, pp. 579-589 (2013)

View Full Text Article

Acrobat PDF (1464 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Multivariate calibration methods such as partial least-squares build calibration models that are not parsimonious: all variables (either wavelengths or samples) are used to define a calibration model. In high-dimensional or large sample size settings, interpretable analysis aims to reduce model complexity by finding a small subset of variables that significantly influences the model. The term “sparsity”, as used here, refers to calibration models having many zero-valued regression coefficients. Only the variables associated with non-zero coefficients influence the model. In this paper, we briefly review the regression problems associated with sparse models and discuss their spectroscopic applications. We also discuss how one can re-appropriate sparse modeling algorithms that perform wavelength selection for purposes of sample selection. In particular, we highlight specific sparse modeling algorithms that are easy to use and understand for the spectroscopist, as opposed to the overly complex “black-box” algorithms that dominate much of the statistical learning literature. We apply these sparse modeling approaches to three spectroscopic data sets.

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Erik Andries and Shawn Martin, "Sparse Methods in Spectroscopy: An Introduction, Overview, and Perspective," Appl. Spectrosc. 67, 579-589 (2013)

Sort:  Journal  |  Reset


References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited