Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 68,
  • Issue 10,
  • pp. 1116-1122
  • (2014)

Hyperspectral Imaging and Characterization of Live Cells by Broadband Coherent Anti-Stokes Raman Scattering (CARS) Microscopy with Singular Value Decomposition (SVD) Analysis

Not Accessible

Your library or personal account may give you access

Abstract

Coherent anti-Stokes Raman scattering (CARS) microscopy can be used as a powerful imaging technique to identify chemical compositions of complex samples in biology, biophysics, medicine, and materials science. In this work we developed a CARS microscopic system capable of hyperspectral imaging. By employing an ultrafast laser source, a photonic crystal fiber, and a scanning laser microscope together with spectral detection by a highly sensitive back-illuminated cooled charge-coupled device (CCD) camera, we were able to rapidly acquire and process hyperspectral images of live cells with chemical selectivity. We discuss various aspects of hyperspectral CARS image analysis and demonstrate the use of singular value decomposition methods to characterize the cellular lipid content.

PDF Article
More Like This
Sparse sampling for fast hyperspectral coherent anti-Stokes Raman scattering imaging

Francesco Masia, Paola Borri, and Wolfgang Langbein
Opt. Express 22(4) 4021-4028 (2014)

Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy

Tak W. Kee and Marcus T. Cicerone
Opt. Lett. 29(23) 2701-2703 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.