Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 68,
  • Issue 12,
  • pp. 1381-1392
  • (2014)

Assessment and Correction of Turbidity Effects on Raman Observations of Chemicals in Aqueous Solutions

Not Accessible

Your library or personal account may give you access

Abstract

Improvements in diode laser, fiber optic, and data acquisition technologies are enabling increased use of Raman spectroscopic techniques for both in lab and in situ water analysis. Aqueous media encountered in the natural environment often contain suspended solids that can interfere with spectroscopic measurements, yet removal of these solids, for example, via filtration, can have even greater adverse effects on the extent to which subsequent measurements are representative of actual field conditions. In this context, this study focuses on evaluation of turbidity effects on Raman spectroscopic measurements of two common environmental pollutants in aqueous solution: ammonium nitrate and trichloroethylene. The former is typically encountered in the runoff from agricultural operations and is a strong scatterer that has no significant influence on the Raman spectrum of water. The latter is a commonly encountered pollutant at contaminated sites associated with degreasing and cleaning operations and is a weak scatterer that has a significant influence on the Raman spectrum of water. Raman observations of each compound in aqueous solutions of varying turbidity created by doping samples with silica flour with grain sizes ranging from 1.6 to 5.0 μm were employed to develop relationships between observed Raman signal strength and turbidity level. Shared characteristics of these relationships were then employed to define generalized correction methods for the effect of turbidity on Raman observations of compounds in aqueous solution.

PDF Article
More Like This
Temperature measurements of turbid aqueous solutions using near-infrared spectroscopy

Naoto Kakuta, Hidenobu Arimoto, Hideyuki Momoki, Fuguo Li, and Yukio Yamada
Appl. Opt. 47(13) 2227-2233 (2008)

Analysis of metabolites in aqueous solutions by using laser Raman spectroscopy

Steve Y. Wang, Charles E. Hasty, Patricia A. Watson, James P. Wicksted, Rex D. Stith, and Wayne F. March
Appl. Opt. 32(6) 925-929 (1993)

Efficient frequency conversion and the crossing-pump effect of stimulated Raman scattering in an aqueous sodium sulfate solution

Yang Xu, Zhenguo Dou, Lu Xing, Zhanlong Li, Zhiwei Men, Chenglin Sun, and Shenghan Wang
Opt. Express 30(25) 45043-45053 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.