Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 69,
  • Issue 2,
  • pp. 222-229
  • (2015)

In Situ Nondestructive Identification of Natural Dyes in Ancient Textiles by Reflection Fourier Transform Mid-Infrared (FT-MIR) Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Silk embroideries and cotton grounds of ancient Caucasian (Kaitag) textiles were analyzed in situ by a portable Fourier transform infrared (FT-IR) spectrometer equipped with a reflection module. Differently colored areas were analyzed for the purpose of identifying the dyes fixed on the fibers. The spectra so obtained were elaborated by calculating the corresponding second derivative, and a library search was then performed using a database including the second derivative spectra of a large range of historical dyes and the corresponding undyed fibers. The results presented here suggest that this technique, combined with the library search method, has a good capability of recognizing natural dyes on both types of ancient textile fibers, in an entirely non-destructive way.

PDF Article
More Like This
Terahertz time-domain spectroscopy for textile identification

M. Naftaly, J. F. Molloy, G. V. Lanskii, K. A. Kokh, and Yu. M. Andreev
Appl. Opt. 52(19) 4433-4437 (2013)

Stand-off identification of aerosols using mid-infrared backscattering Fourier-transform spectroscopy

Luke Maidment, Zhaowei Zhang, Christopher R. Howle, and Derryck T. Reid
Opt. Lett. 41(10) 2266-2269 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.