OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 1 — Jan. 19, 2007

Reduction of the spherical aberration effect in high-numerical-aperture optical scanning instruments

Isabel Escobar, Genaro Saavedra, Manuel Martínez-Corral, and Jesús Lancis  »View Author Affiliations

JOSA A, Vol. 23, Issue 12, pp. 3150-3155 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (249 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In modern high-numerical-aperture (NA) optical scanning instruments, such as scanning microscopes, optical data storage systems, or laser trapping technology, the beam emerging from the high-NA objective focuses deeply through an interface between two media of different refractive index. Such a refractive index mismatch introduces an important amount of spherical aberration, which increases dynamically when scanning at increasing depths. This effect strongly degrades the instrument performance. Although in the past few years many different techniques have been reported to reduce the spherical aberration effect, no optimum solution has been found. Here we concentrate on a technique whose main feature is its simplicity. We refer to the use of purely absorbing beam-shaping elements, which with a minimum modification of optical architecture will allow a significant reduction of the spherical aberration effect. Specifically, we will show that an adequately designed reversed-Gaussian aperture permits the production of a focal spot whose form changes very slowly with the spherical aberration.

© 2006 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(140.7010) Lasers and laser optics : Laser trapping
(180.1790) Microscopy : Confocal microscopy
(210.0210) Optical data storage : Optical data storage
(220.1000) Optical design and fabrication : Aberration compensation

ToC Category:
Optical Design and Fabrication

Original Manuscript: March 17, 2006
Revised Manuscript: June 15, 2006
Manuscript Accepted: June 16, 2006

Virtual Issues
Vol. 2, Iss. 1 Virtual Journal for Biomedical Optics

Isabel Escobar, Genaro Saavedra, Manuel Martínez-Corral, and Jesús Lancis, "Reduction of the spherical aberration effect in high-numerical-aperture optical scanning instruments," J. Opt. Soc. Am. A 23, 3150-3155 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Tsujiuchi, "Correction of optical images by compensation of aberrations and by spatial frequency filtering," Prog. Oceanogr. 2, 133-180 (1963).
  2. R. Barakat and A. Houston, "Transfer function of an annular aperture in the presence of spherical aberration," J. Opt. Soc. Am. 55, 538-541 (1965). [CrossRef]
  3. J. P. Mills and B. J. Thompson, "Effect of aberrations and apodization on the performance of coherent optical systems. I. The amplitude impulse response," J. Opt. Soc. Am. A 3, 694-703 (1986). [CrossRef]
  4. J. Ojeda-Castañeda, P. Andrés, and A. Diaz, "Annular apodizers for low sensitivity to defocus and to spherical aberration," Opt. Lett. 11, 487-489 (1986). [CrossRef] [PubMed]
  5. J. Ojeda-Castañeda, P. Andrés, and A. Diaz, "Strehl ratio with low sensitivity to spherical aberration," J. Opt. Soc. Am. A 5, 1233-1236 (1988). [CrossRef]
  6. J. Ojeda-Castañeda, E. Tepichin, and A. Pons, "Apodization of annular apertures: Strehl ratio," Appl. Opt. 27, 5140-5145 (1988). [CrossRef] [PubMed]
  7. S. Mezouari and A. R. Harvey, "Phase pupil functions for reduction of defocus and spherical aberration," Opt. Lett. 28, 771-773 (2003). [CrossRef] [PubMed]
  8. J.B.Pawley, ed., Handbook of Biological Confocal Microscopy (Plenum, 1995).
  9. S. Stallinga, "Compact description of substrate-related aberrations in high numerical-aperture optical disk readout," Appl. Opt. 44, 849-858 (2005). [CrossRef] [PubMed]
  10. A. Rohrbach and E. H. K. Stelzer, "Optical trapping of dielectric particles in arbitrary fields," J. Opt. Soc. Am. A 18, 839-853 (2001). [CrossRef]
  11. C. J. R. Sheppard and C. J. Cogswell, "Effects of aberrating layers and the tube length on confocal imaging properties," Optik (Stuttgart) 87, 34-38 (1991).
  12. P. Török, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation," J. Opt. Soc. Am. A 12, 325-332 (1995). [CrossRef]
  13. M. J. Booth, M. A. A. Neil, and T. Wilson, "Aberration correction for confocal imaging in refractive-index-mismatch media," J. Microsc. 192, 90-98 (1998). [CrossRef]
  14. O. Haeberlé, "Focusing of light through a stratified medium: a practical approach for computing microscope point spread functions. Part II: Confocal and multiphoton microscopy," Opt. Commun. 235, 1-10 (2004). [CrossRef]
  15. T. D. Lister, R. S. Upton, and H. Luo, "Objective lens design for multiple-layer optical data storage," Opt. Eng. 38, 295-301 (1999). [CrossRef]
  16. A. Rohrbach and E. H. K. Stelzer, "Trapping forces, force constant, and potential depths for dielectric spheres in the presence of spherical aberrations," Appl. Opt. 41, 2494-2507 (2002). [CrossRef] [PubMed]
  17. C. J. R. Sheppard and M. Gu, "Aberration compensation in confocal microscopy," Appl. Opt. 30, 3563-3568 (1991). [CrossRef] [PubMed]
  18. P. C. Ke and M. Gu, "Characterization of trapping force in the presence of spherical aberration," J. Mod. Opt. 45, 2159-2168 (1998). [CrossRef]
  19. S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, "Measuring lateral efficiency of optical traps: the effect of tube length," Opt. Commun. 259, 204-211 (2006). [CrossRef]
  20. M. Schwertner, M. J. Booth, and T. Wilson, "Simple optimization procedure for objective lens correction collar setting," J. Microsc. 217, 184-187 (2005). [CrossRef] [PubMed]
  21. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, "Adaptive aberration correction in a confocal microscope," Proc. Natl. Acad. Sci. U.S.A. 99, 5788-5792 (2002). [CrossRef] [PubMed]
  22. E. Theofanidou, L. Wilson, W. J. Hossak, and J. Artl, "Spherical aberration correction for optical tweezers," Opt. Commun. 236, 145-150 (2004). [CrossRef]
  23. S. Somalinga, K. Dressbach, M. Hain, S. Stankovic, T. Tschudi, J. Knittel, and H. Richter, "Effective spherical aberration compensation by use of nematic liquid-crystal device," Appl. Opt. 43, 2722-2729 (2004). [CrossRef]
  24. M. A. A. Neil, R. Juskaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, "Optimized pupil-plane filters for confocal microscope point-spread function engineering," Opt. Lett. 25, 245-247 (2000). [CrossRef]
  25. C. J. R. Sheppard, "Binary optics and confocal imaging," Opt. Lett. 24, 505-506 (1999). [CrossRef]
  26. M. Martinez-Corral, M. T. Caballero, E. H. K. Stelzer, and J. Swoger, "Tailoring the axial shape of the point spread function using the Toraldo concept," Opt. Express 10, 98-103 (2002). [PubMed]
  27. C. M. Blanca and S. W. Hell, "Axial superresolution with ultrahigh aperture lenses," Opt. Express 10, 893-898 (2002). [PubMed]
  28. G. Boyer, "New class of axially apodizing filters for confocal scanning microscopy," J. Opt. Soc. Am. A 19, 584-589 (2002). [CrossRef]
  29. M. Martinez-Corral, C. Ibáñez-López, G. Saavedra, and M. T. Caballero, "Axial gain in resolution in optical sectioning fluorescence microscopy by shaded-ring filters," Opt. Express 11, 1740-1745 (2003). [CrossRef] [PubMed]
  30. S. S. Sherif and P. Török, "Pupil plane masks for super-resolution in high-numerical-aperture focusing," J. Mod. Opt. 51, 2007-2019 (2004).
  31. C. Ibáñez-López, G. Saavedra, G. Boyer, and M. Martínez-Corral, "Quasi-isotropic 3-D resolution in two-photon scanning microscopy," Opt. Express 12, 6168-6174 (2005). [CrossRef]
  32. M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, 2000).
  33. C. J. R. Sheppard and P. Török, "Effects of specimen refractive index on confocal imaging," J. Microsc. 185, 366-374 (1997). [CrossRef]
  34. P. Török and P. Varga, "Electromagnetic diffraction of light focused through a stratified medium," Appl. Opt. 36, 2305-2312 (1997). [CrossRef] [PubMed]
  35. O. Haeberlé, M. Ammar, H. Furukawa, K. Tenjimbayashi, and P. Torok, "Point spread function of optical microscopes imaging through stratified media," Opt. Express 11, 2964-2969 (2003). [CrossRef] [PubMed]
  36. J. Campos, J. C. Escalera, C. J. R. Sheppard, and M. J. Yzuel, "Axially invariant pupil filters," J. Mod. Opt. 47, 57-68 (2000).
  37. D. D. Lowenthal, "Maréchal intensity criteria modified for Gaussian beams," Appl. Opt. 13, 2126-2133 (1974). [CrossRef] [PubMed]
  38. M. Martínez-Corral, L. Muñoz-Escriva, M. Kowalczyk, and T. Cichocki, "One-dimensional iterative algorithm for three-dimensional point-spread function engineering," Opt. Lett. 26, 1861-1863 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited