OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 6 — Jun. 13, 2006

Integration of local motion is normal in amblyopia

Robert F. Hess, Behzad Mansouri, Steven C. Dakin, and Harriet A. Allen  »View Author Affiliations


JOSA A, Vol. 23, Issue 5, pp. 986-992 (2006)
http://dx.doi.org/10.1364/JOSAA.23.000986


View Full Text Article

Enhanced HTML    Acrobat PDF (498 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the global integration of local motion direction signals in amblyopia, in a task where performance is equated between normal and amblyopic eyes at the single element level. We use an equivalent noise model to derive the parameters of internal noise and number of samples, both of which we show are normal in amblyopia for this task. This result is in apparent conflict with a previous study in amblyopes showing that global motion processing is defective in global coherence tasks [ Vision Res. 43, 729 (2003) ]. A similar discrepancy between the normalcy of signal integration [ Vision Res. 44, 2955 (2004) ] and anomalous global coherence form processing has also been reported [ Vision Res. 45, 449 (2005) ]. We suggest that these discrepancies for form and motion processing in amblyopia point to a selective problem in separating signal from noise in the typical global coherence task.

© 2006 Optical Society of America

OCIS Codes
(330.4150) Vision, color, and visual optics : Motion detection
(330.5000) Vision, color, and visual optics : Vision - patterns and recognition
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7310) Vision, color, and visual optics : Vision

ToC Category:
Vision and color

History
Original Manuscript: July 1, 2005
Manuscript Accepted: September 30, 2005

Virtual Issues
Vol. 1, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Robert F. Hess, Behzad Mansouri, Steven C. Dakin, and Harriet A. Allen, "Integration of local motion is normal in amblyopia," J. Opt. Soc. Am. A 23, 986-992 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-23-5-986


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. H. Hubel and T. N. Weisel, "Receptive fields and functional architecture of monkey striate cortex," J. Physiol. (London) 195, 215-243 (1968).
  2. A. Mikami, W. T. Newsome, and R. H. Wurtz, "Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extra-striate area MT," J. Neurophysiol. 55, 1308-1327 (1986). [PubMed]
  3. A. Mikami, W. T. Newsome, and R. H. Wurtz, "Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1," J. Neurophysiol. 55, 1328-1339 (1986). [PubMed]
  4. J. A. Movshon, E. H. Adelson, M. S. Gizzi, and W. T. Newsome, "The analysis of moving visual patterns," in Pattern Recognition Mechanism, C.Chagas, R.Gattass, and C.Gross, eds. (Vatican Press, 1985), pp. 117-151.
  5. J. Allman, F. Miezin, and E. McGuinness, "Direction and velocity specific responses from beyond the classical receptive field in middle temporal visual area (MT)," Perception 14, 105-126 (1985). [CrossRef] [PubMed]
  6. R. T. Born and R. B. Tootell, "Segregation of global and local motion processing in primate middle temporal visual area," Nature (London) 357, 497-499 (1992). [CrossRef]
  7. W. T. Newsome and E. B. Pare, "A selective impairment of motion perception following lesions of the middle temporal visual area (MT)," J. Neurosci. 8, 2201-2211 (1988). [PubMed]
  8. P. H. Schiller and K. M. Lee, "The effects of lateral geniculate nucleus, area V4 and middle temporal (MT) lesions on visually guided eye movements," Visual Neurosci. 11, 229-241 (1994). [CrossRef]
  9. K. Rudolph and T. Pasternak, "Transient and permanent deficits in motion perception after lesions of cortical area MT and MST in macaque monkey," Cereb. Cortex 9, 90-100 (1999). [CrossRef] [PubMed]
  10. K. Lauwers, R. Sounders, R. Vogels, E. Vandenbussche, and G. A. Orban, "Impairment in motion discrimination tasks is unrelated to amount of damage to superior temporal sulcus motion area," J. Comp. Neurol. 420, 539-557 (2000). [CrossRef] [PubMed]
  11. C. L. Baker, Jr., R. F. Hess, and J. Zihl, "Residual motion perception in a 'motion-blind' patient, assessed with limited-lifetime random dot stimuli," J. Neurosci. 11, 454-461 (1991). [PubMed]
  12. A. J. Simmers, T. Ledgeway, R. F. Hess, and P. V. McGraw, "Deficits to global motion processing in human amblyopia," Vision Res. 43, 729-738 (2003). [CrossRef] [PubMed]
  13. D. Ellemberg, T. L. Lewis, D. Maurer, S. Brar, and H. P. Brent, "Better perception of global motion after monocular than after binocular deprivation," Vision Res. 42, 169-179 (2002). [CrossRef] [PubMed]
  14. J. Atkinson, O. J. Braddick, S. Anker, W. Curran, R. Andrews, and J. Braddick, "Neurobiological models of visuo-spatial cognition in young William syndrome children: measures of dorsal stream and frontal function," Dev. Neuropsychol. 23, 139-172 (2003). [PubMed]
  15. J. Spencer, J. O'Brien, K. Riggs, O. J. Braddick, J. Atkinson, and J. Wattam-Bell, "Motion processing in autism: evidence for a dorsal-stream deficiency," NeuroReport 11, 2765-2767 (2000). [CrossRef] [PubMed]
  16. P. Cornelissen, A. Richardson, A. Mason, S. Fowler, and J. Stein, "Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls," Vision Res. 35, 1483-1494 (1995). [CrossRef] [PubMed]
  17. A. Gunn, E. Cory, J. Atkinson, O. J. Braddick, J. Wattam-Bell, A. Guzzetta, and G. Cioni, "Dorsal and ventral stream sensitivity in normal development and hemiplegia," NeuroReport 13, 843-847 (2002). [CrossRef] [PubMed]
  18. O. J. Braddick, J. Atkinson, and J. Wattam-Bell, "Normal and anomalous development of visual motion processing: motion coherence and dorsal-stream vulnerability'," Neuropsychologia 41, 1769-1784 (2003). [CrossRef] [PubMed]
  19. M. Levi and R. S. Harwerth, "Spatio-temporal interactions in anisometropic and strabismic amblyopia," Invest. Ophthalmol. Visual Sci. 16, 90-95 (1977).
  20. R. F. Hess and E. R. Howell, "The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification," Vision Res. 17, 1049-1055 (1977). [CrossRef] [PubMed]
  21. R. F. Hess, R. Demanins, and P. J. Bex, "A reduced motion aftereffect in strabismic amblyopia," Vision Res. 37, 1303-1311 (1997). [CrossRef] [PubMed]
  22. R. F. Hess, T. D. France, and U. Tulunay-Keesey, "Residual vision in humans who have been monocularly deprived of pattern stimulation in early life," Exp. Brain Res. 44, 295-311 (1981). [CrossRef] [PubMed]
  23. D. H. Brainard, "The Psychophysics Toolbox," Spatial Vis. 10, 433-436 (1997). [CrossRef]
  24. D. G. Pelli, "The VideoToolbox software for visual psychophysics: transforming numbers into movies," Spatial Vis. 10, 437-442 (1997). [CrossRef]
  25. D. G. Pelli and L. Zhang, "Accurate control of contrast on microcomputer displays," Vision Res. 31, 1337-1350 (1991). [CrossRef] [PubMed]
  26. R. J. Watt and D. Andrews, "APE: adaptive estimates of psychometric functions," Curr. Psychol. Rev. 1, 205-214 (1981). [CrossRef]
  27. F. A. Wichmann and N. J. Hill, "The psychometric function: I. Fitting, sampling, and goodness of fit," Percept. Psychophys. 63, 1293-1313 (2001). [CrossRef]
  28. F. A. Wichmann and N. J. Hill, "The psychometric function: II. Bootstrap-based confidence intervals and sampling," Percept. Psychophys. 63, 1314-1329 (2001). [CrossRef]
  29. S. C. Dakin, "Information limit on the spatial integration of local orientation signals," J. Opt. Soc. Am. A 18, 1016-1026 (2001). [CrossRef]
  30. B. Mansouri, H. A. Allen, R. F. Hess, S. C. Dakin, and O. Ehrt, "Integration of orientation information in amblyopia," Vision Res. 44, 2955-2969 (2004). [CrossRef] [PubMed]
  31. B. Mansouri, H. A. Allen, R. F. Hess, and S. C. Dakin, "Integration of global information in amblyopia and the effect of noise," presented at the Society for Neuroscience Annual Meeting, San Diego, Calif., October 23-27, 2004.
  32. A. J. Simmers, T. Ledgeway, and R. F. Hess, "The influences of visibility and anomalous integration processes on the perception of global spatial form versus motion in human amblyopia," Vision Res. 45, 449-460 (2005). [CrossRef]
  33. B. Mansouri, H. A. Allen, and R. F. Hess, "Detection, discrimination and integration of second-order orientation information in strabismic and anisometropic amblyopia," Vision Res. 45, 2449-2460 (2005). [CrossRef] [PubMed]
  34. O. J. Braddick, J. M. O'Brien, J. Wattam-Bell, J. Atkinson, and R. Turner, "Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain," Curr. Biol. 10, 731-734 (2000). [CrossRef] [PubMed]
  35. B. Mansouri, R. F. Hess, H. A. Allen, and S. C. Dakin, "Integration, segregation, and binocular combination," J. Opt. Soc. Am. A 22, 38-48 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited