OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 6 — Jun. 13, 2006

Postreceptoral chromatic-adaptation mechanisms in the red–green and blue–yellow systems using simple reaction times

José M. Medina and José A. Díaz  »View Author Affiliations


JOSA A, Vol. 23, Issue 5, pp. 993-1007 (2006)
http://dx.doi.org/10.1364/JOSAA.23.000993


View Full Text Article

Enhanced HTML    Acrobat PDF (249 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Simple visual-reaction times (VRT) were measured for a variety of stimuli selected along red–green ( L M axis) and blue–yellow [ S ( L + M ) axis] directions in the isoluminant plane under different adaptation stimuli. Data were plotted in terms of the RMS cone contrast in contrast-threshold units. For each opponent system, a modified Piéron function was fitted in each experimental configuration and on all adaptation stimuli. A single function did not account for all the data, confirming the existence of separate postreceptoral adaptation mechanisms in each opponent system under suprathreshold conditions. The analysis of the VRT-hazard functions suggested that both color-opponent mechanisms present a well-defined, transient-sustained structure at marked suprathreshold conditions. The influence of signal polarity and chromatic adaptation on each color axis proves the existence of asymmetries in the integrated hazard functions, suggesting separate detection mechanisms for each pole (red, green, blue, and yellow detectors).

© 2006 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.1880) Vision, color, and visual optics : Detection
(330.7320) Vision, color, and visual optics : Vision adaptation

ToC Category:
Vision and color

History
Original Manuscript: May 11, 2005
Revised Manuscript: November 14, 2005
Manuscript Accepted: November 16, 2005

Virtual Issues
Vol. 1, Iss. 6 Virtual Journal for Biomedical Optics

Citation
José M. Medina and José A. Díaz, "Postreceptoral chromatic-adaptation mechanisms in the red-green and blue-yellow systems using simple reaction times," J. Opt. Soc. Am. A 23, 993-1007 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-23-5-993


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. A. A. Kingdom, "Color brings relief to human vision," Nat. Neurosci. 6, 641-644 (2003). [CrossRef] [PubMed]
  2. K. R. Gegenfurther and D. C. Kiper, "Color Vision," Annu. Rev. Neurosci. 26, 181-206 (2003).
  3. D. M. Dacey, "Parallel pathways for spectral coding in primate retina," Annu. Rev. Neurosci. 23, 743-775 (2000). [CrossRef] [PubMed]
  4. R. L. De Valois and K. K. De Valois, "A multistage color model," Vision Res. 33, 1053-1065 (1993). [CrossRef] [PubMed]
  5. S. L. Guth, "Model for color vision and light adaptation," J. Opt. Soc. Am. A 8, 976-993 (1991). [CrossRef] [PubMed]
  6. R. M. Boynton, "A system of photometry and colorimetry based on cone excitations," Color Res. Appl. 11, 244-252 (1986). [CrossRef]
  7. J. Krauskopf, "Higher order color mechanisms," in Color Vision: From Genes to Perception, K.R.Gegenfurther and L.T.Sharpe, eds. (Cambridge U. Press, 1999), pp. 303-317.
  8. M. A. Webster and J. D. Mollon, "The influence of contrast adaptation on color appearance," Vision Res. 34, 1993-2020 (1994). [CrossRef] [PubMed]
  9. R. L. De Valois, K. K. De Valois, and L. E. Mahon, "Contribution of S opponent cells to color appearance," Proc. Natl. Acad. Sci. U.S.A. 97, 512-517 (2000). [CrossRef] [PubMed]
  10. R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, "Some transformations of color information from lateral geniculate nucleus to striate cortex," Proc. Natl. Acad. Sci. U.S.A. 97, 4997-5002 (2000). [CrossRef] [PubMed]
  11. M. J. Sankeralli and K. T. Mullen, "Bipolar or rectified chromatic detection mechanisms?" Visual Neurosci. 18, 127-135 (2001). [CrossRef]
  12. P. V. McGraw, D. J. McKeefry, D. Whitaker, and Chara Vakrou, "Positional adaptation reveals multiple chromatic mechanisms in human vision," J. Vision 4, 626-636 (2003), http://journalofvision.org/4/7/8.
  13. V. C. Smith, R. C. Bowen, and J. Pokorny, "Threshold temporal integration of chromatic stimuli," Vision Res. 24, 653-660 (1984). [CrossRef] [PubMed]
  14. Y. Kawabata, "Temporal integration at equiluminance and chromatic adaptation," Vision Res. 34, 1007-1018 (1994). [CrossRef] [PubMed]
  15. A. Hughes and P. J. De Marco, "Time course of adaptation to stimuli presented along cardinal lines in color space," J. Opt. Soc. Am. A 20, 2216-2226 (2003). [CrossRef]
  16. A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time course of adaptation along the RG cardinal axis," Color Res. Appl. 26, s43-s47 (2000). [CrossRef]
  17. A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time-course of S-cone system adaptation to simple and complex fields," Vision Res. 43, 1135-1147 (2003). [CrossRef] [PubMed]
  18. Q. Zaidi and A. G. Shapiro, "Adaptive orthogonalization of opponent-color signals," Biol. Cybern. 69, 415-428 (1993). [PubMed]
  19. R. D. Luce, Response Times (Oxford U. Press, 1986), pp. 1-174.
  20. D. E. Meyer, A. M. Osman, D. E. Irvin, and S. Yantis, "Modern mental chronometry," Biol. Psychol. 26, 3-67 (1988). [CrossRef] [PubMed]
  21. J. A. Díaz, L. Jiménez del Barco, J. R. Jiménez, and E. Hita, "Simple reaction time to chromatic changes along L&M-constant and S-constant cone axes," Color Res. Appl. 26, 223-233 (2001). [CrossRef]
  22. D. J. McKeefry, N. R. A. Parry, and I. J. Murray, "Simple reaction times in color space: the influence of chromaticity, contrast, and cone opponency," Invest. Ophthalmol. Visual Sci. 44, 2267-2275 (2003). [CrossRef]
  23. P. Lennie, "The physiological basis of variations in visual latency," Vision Res. 21, 815-824 (1981). [CrossRef] [PubMed]
  24. J. D. Mollon and J. Krauskopf, "Reaction time as a measure of the temporal response properties of individual color mechanisms," Vision Res. 13, 27-40 (1973). [CrossRef] [PubMed]
  25. T. Ueno, "Sustained and transient properties of chromatic and luminance systems," Vision Res. 32, 1055-1065 (1992). [CrossRef] [PubMed]
  26. D. L. Tolhurst, "Reaction times in the detection of gratings by humans observers: a probabilistic mechanism," Vision Res. 15, 1143-1149 (1975). [CrossRef] [PubMed]
  27. R. S. Harwerth, R. L. Boltz, and E. L. Smith, "Psychophysical evidence for sustained and transient channels in the monkey visual system," Vision Res. 20, 15-22 (1980). [CrossRef] [PubMed]
  28. S. H. Schwartz and M. S. Loop, "Evidence for transient luminance and quasi-sustained color mechanisms," Vision Res. 22, 445-447 (1982). [CrossRef] [PubMed]
  29. S. H. Schwartz, "Reaction time distributions and their relationship to the transient/sustained nature of neural discharge," Vision Res. 32, 2087-2092 (1992). [CrossRef] [PubMed]
  30. H. E. Smithson and J. D. Mollon, "Is the S-opponent chromatic sub-system sluggish?" Vision Res. 44, 2919-2929 (2004). [CrossRef] [PubMed]
  31. P. L. Smith, "Psychophysically principled models of visual simple reaction time," Psychol. Rev. 102, 567-593 (1995). [CrossRef]
  32. P. L. Smith and T. Van Zandt, "Time-dependent Poisson counter models of response latency in simple judgment," Br. J. Math. Stat. Psychol. 53, 293-315 (2000). [CrossRef] [PubMed]
  33. B. Bloxom, "Estimating response hazard functions: an exposition and extension," J. Math. Psychol. 28, 401-420 (1984). [CrossRef]
  34. J. T. Townsend, "Truth and consequences of ordinal differences in statistical distributions: toward a theory of hierarchical inference," Psychol. Bull. 108, 551-567 (1990). [CrossRef] [PubMed]
  35. M. J. Wenger and B. S. Gibson, "Using hazard functions to asses changes in processing capacity in an attentional cuing paradigm," J. Exp. Psychol. Hum. Percept. Perform. 30, 708-719 (2004). [CrossRef] [PubMed]
  36. D. L. Post and C. S. Calhoun, "An evaluation of methods producing desired color on CRT monitors," Color Res. Appl. 14, 172-186 (1989). [CrossRef]
  37. L. Jiménez del Barco, J. A. Díaz, J. R. Jiménez, and M. Rubiño, "Considerations on the calibration of color displays assuming constant-channel chromaticity," Color Res. Appl. 20, 377-387 (1995). [CrossRef]
  38. M. J. Nissen and J. Pokorny, "Wavelength effects on simple reaction time," Percept. Psychophys. 22, 457-462 (1977). [CrossRef]
  39. T. Ueno, J. Pokorny, and V. C. Smith, "Reaction times to chromatic stimuli," Vision Res. 25, 1623-1627 (1985). [CrossRef] [PubMed]
  40. T. Ueno and W. H. Swanson, "Response pooling between chromatic and luminance systems," Vision Res. 29, 325-333 (1989). [CrossRef] [PubMed]
  41. D. H. Kelly and D. van Norren, "Two band model of heterochromatic flicker photometry," J. Opt. Soc. Am. 67, 1081-1091 (1977). [CrossRef] [PubMed]
  42. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982), pp. 429-451, 458-471.
  43. C. W. Eriksen, "A source of error in attempts to distinguish coactivation from separate activation in the perception of redundant targets," Percept. Psychophys. 44, 191-193 (1988). [CrossRef] [PubMed]
  44. J. Miller, "A warning about median reaction time," J. Exp. Psychol. Hum. Percept. Perform. 14, 539-543 (1988). [CrossRef] [PubMed]
  45. G. R. Cole, T. Hine, and W. McIlhaga, "Detection mechanisms in L-, M-, and S-cone contrast space," J. Opt. Soc. Am. A 10, 38-51 (1993). [CrossRef] [PubMed]
  46. G. A. Gescheider, Psychophysics: The Fundamentals, 3rd ed. (Erlbaum, 1997).
  47. S. Plainis and I. J. Murray, "Neurophysiological interpretation of human visual reaction times: effect of contrast, spatial frequency and luminance," Neuropsychologia 38, 1555-1664 (2000). [CrossRef] [PubMed]
  48. N. D. Singpurwalla and M. Y. Wong, "Estimation of the failure rate—a survey of nonparametric methods part I: non-Bayesian methods," Commun. Stat. Theory Meth. 12, 559-588 (1983). [CrossRef]
  49. J. T. Townsend and F. G. Ashby, "Methods of modeling capacity in simple processing systems," in Cognitive Theory Vol. III, J.Castellan and F.Restle, eds. (Erlbaum, 1978), pp. 200-239.
  50. J. T. Townsend and G. Nozawa, "Spatio-temporal properties of elementary perception: an investigation of parallel, serial, and coactive theories," J. Math. Psychol. 39, 321-359 (1995). [CrossRef]
  51. J. T. Townsend and W. J. Wenger, "A theory of interactive parallel processing: new capacity measures and predictions for a response time inequality series," Psychol. Rev. 111, 1003-1035 (2004). [CrossRef] [PubMed]
  52. M. P. Deiber, V. Ibañez, N. Sadato, and M. Hallet, "Cerebral structures participating in motor preparation in humans: a position emission tomography study," J. Neurophysiol. 75, 233-247 (1998).
  53. B. Burle, M. Bonnet, F. Vidal, C. A. Posamaï, and T. Hasbroucq, "A transcranial magnetic simulation study of information processing in the motor cortex: relationship between the silent period and the reaction time delay," Psychophysiology 39, 207-217 (2002). [CrossRef] [PubMed]
  54. N. Nishitani, K. Uutela, H. Shibasaki, and R. Hari, "Cortical visuomotor integration during eye pursuit and eye-finger pursuit," J. Neurosci. 19, 2647-2657 (1999). [PubMed]
  55. M. T. Schmolesky, Y. Yang, D. P. Hanes, K. G. Thompson, S. Leutgeb, J. D. Schall, and A. G. Leventhal, "Signal timing across macaque visual system," J. Neurophysiol. 79, 3272-3278 (1998). [PubMed]
  56. R. C. Reid and R. M. Shapley, "Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus," J. Neurosci. 22, 6158-6175 (2002). [PubMed]
  57. J. H. R. Maunsell and J. R. Gibson, "Visual response latencies in striate cortex of macaque monkey," J. Neurophysiol. 68, 1332-1344 (1992). [PubMed]
  58. L. G. Nowak, M. H. J. Munk, P. Girard, and J. Bullier, "Visual latencies in areas V1 and V2 of the macaque monkey," Visual Neurosci. 12, 371-384 (1995). [CrossRef]
  59. N. P. Cottaris and R. L. De Valois, "Temporal dynamics of chromatic tuning in macaque primary visual cortex," Nature (London) 395, 896-900 (1998). [CrossRef]
  60. D. J. McKeefry, I. J. Murray, and J. J. Kulikowski, "Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation," Vision Res. 41, 245-255 (2001). [CrossRef] [PubMed]
  61. K. R. Dobkins, K. L. Gunther, and D. H. Peterzell, "What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity?" Vision Res. 40, 613-628 (2000). [CrossRef] [PubMed]
  62. S. Chatterjee and E. M. Callaway, "S cone contributions to the magnocellular visual pathway in macaque monkey," Neuron 35, 1135-1146 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited