OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 7 — Jul. 17, 2006

Rapid simulation of steady-state spatially resolved reflectance and transmittance profiles of multilayered turbid materials

Craig Donner and Henrik Wann Jensen  »View Author Affiliations

JOSA A, Vol. 23, Issue 6, pp. 1382-1390 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (248 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a technique for efficiently computing the reflection and transmission of light by arbitrary systems of turbid layers. To approximate the steady-state reflectance and transmittance without the need to solve difficult boundary conditions, we convolve the reflectance and transmittance profiles of individual layers. We extend single-slab boundary conditions to handle index-of-refraction mismatches between turbid slabs and account for interlayer scattering by applying methods similar to Kubelka–Munk theory in frequency space. We demonstrate good agreement between the reflectance and the transmittance predicted by our model and numerical Monte Carlo methods and show that the far-source reflectance and transmittance of multilayered turbid materials are dominated by interlayer scattering.

© 2006 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.1990) Scattering : Diffusion
(290.7050) Scattering : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 24, 2005
Manuscript Accepted: October 21, 2005

Virtual Issues
Vol. 1, Iss. 7 Virtual Journal for Biomedical Optics

Craig Donner and Henrik Wann Jensen, "Rapid simulation of steady-state spatially resolved reflectance and transmittance profiles of multilayered turbid materials," J. Opt. Soc. Am. A 23, 1382-1390 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. C. Wilson and M. S. Patterson, "The physics of photodynamic therapy," Phys. Med. Biol. 31, 327-360 (1986). [CrossRef] [PubMed]
  2. S. L. Jacques and S. A. Prahl, "Modeling optical and thermal distributions in tissue during laser irradiation," Lasers Surg. Med. 6, 494-503 (1987). [CrossRef] [PubMed]
  3. M. J. C. van Gemert, S. L. Jacques, H. J. C. M. Sterenborg, and W. M. Star, "Skin optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989). [CrossRef] [PubMed]
  4. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnières, and H. van den Bergh, "Noninvasive determination of the optical properties of two-layered turbid media," Appl. Opt. 37, 779-791 (1998). [CrossRef]
  5. R. P. Hemenger, "Optical properties of turbid media with specularly reflecting boundaries: applications to biological problems," Appl. Opt. 16, 2007-2012 (1977). [CrossRef] [PubMed]
  6. T. J. Farrell, M. S. Patterson, and M. Essenpreis, "Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry," Appl. Opt. 37, 1958-1972 (1998). [CrossRef]
  7. L. V. Wang, S. L. Jacques, and L. Zheng, "MCML—Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  8. S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, "The finite element model for the propagation of light in scattering media: a direct method for domains with nonscattering regions," Med. Phys. 27, 252-264 (2000). [CrossRef] [PubMed]
  9. J. M. Schmitt, G. X. Zhou, and E. C. Walker, "Multilayer model of photon diffusion in skin," J. Opt. Soc. Am. A 7, 2141-2153 (1990). [CrossRef] [PubMed]
  10. M. Keijzer, W. M. Star, and P. R. M. Storchi, "Optical diffusion in layered media," Appl. Opt. 27, 1820-1824 (1988). [CrossRef] [PubMed]
  11. A. Kienle, T. Glanzmann, G. Wagnières, and H. van den Bergh, "Investigation of two-layered turbid media with time-resolved reflectance," Appl. Opt. 37, 6852-6862 (1998). [CrossRef]
  12. J.-M. Tualle, J. Prat, E. Tinet, and S. Avrillier, "Real-space Green's function calculation for the solution of the diffusion equation in stratified turbid media," J. Opt. Soc. Am. A 17, 2046-2055 (2000). [CrossRef]
  13. J.-M. Tualle, H. L. Nghiem, D. Ettori, R. Sablong, E. Tinet, and S. Avrillier, "Asymptotic behavior and inverse problem in layered scattering media," J. Opt. Soc. Am. A 21, 24-34 (2004). [CrossRef]
  14. I. A. Vitkin, B. C. Wilson, and R. R. Anderson, "Analysis of layered scattering materials by pulsed photothermal radiometry: application to photon propagation in tissue," Appl. Opt. 34, 2973-2982 (1995). [CrossRef] [PubMed]
  15. G. Alexandrakis, T. J. Farrell, and M. S. Patterson, "Monte Carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain," Appl. Opt. 39, 2235-2244 (2000). [CrossRef]
  16. J. Ripoll, V. Ntziachristos, J. P. Culver, D. N. Pattanayak, A. G. Yodh, and M. Nieto-Vesperinas, "Recovery of optical parameters in multiple-layered diffusive media: theory and experiments," J. Opt. Soc. Am. A 18, 821-830 (2001). [CrossRef]
  17. F. Martelli, A. Sassaroli, Y. Yamada, and G. Zaccanti, "Analytical approximate solutions of the time-domain diffusion equation in layered slabs," J. Opt. Soc. Am. A 19, 71-80 (2002). [CrossRef]
  18. S. D. Bianco, F. Martelli, and G. Zaccanti, "Procedure for retrieving the optical properties of a two-layered medium from time-resolved reflectance measurements," Opt. Lett. 36, 4587-4599 (1997).
  19. F. Martelli, A. Sassaroli, S. D. Bianco, Y. Yamada, and G. Zaccanti, "Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method," Phys. Rev. E 67, 056623 (2003). [CrossRef]
  20. J. Ripoll and M. Nieto-Vesperinas, "Index mismatch for diffuse photon density waves at both flat and rough diffuse-diffuse interfaces," J. Opt. Soc. Am. A 16, 1947-1957 (1999). [CrossRef]
  21. L. V. Wang, S. L. Jacques, and L. Zheng, "CONV—convolution for responses to a finite diameter photon beam incident on multi-layered tissues," Comput. Methods Programs Biomed. 54, 141-150 (1997). [CrossRef]
  22. T. J. Farrell and M. S. Patterson, "A diffusion theory model of spatially resolved, steady-state diffuse reflections for the noninvasive determination of tissue optical propertiesin vivo," Med. Phys. 19, 879-888 (1992). [CrossRef] [PubMed]
  23. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. T. Bosch, "Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory," Appl. Opt. 22, 2456-2462 (1983). [CrossRef] [PubMed]
  24. A. Ishimaru, Wave Propagation and Scattering in Random Media (Oxford U. Press, 1978).
  25. D. Contini, F. Martelli, and G. Zaccanti, "Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory," Appl. Opt. 36, 4587-4599 (1997). [CrossRef] [PubMed]
  26. W. G. Egan, T. W. Hilgeman, and J. Reichman, "Determination of absorption and scattering coefficients for nonhomogeneous media. 2: Experiment," Appl. Opt. 12, 1816-1823 (1973). [CrossRef] [PubMed]
  27. L. V. Wang, "Rapid modeling of diffuse reflectance of light in turbid slabs," J. Opt. Soc. Am. A 15, 936-944 (1998). [CrossRef]
  28. G. W. Faris, "Diffusion equation boundary conditions for the interface between turbid media: a comment," J. Opt. Soc. Am. A 19, 519-520 (2002). [CrossRef]
  29. S. Prahl, "Light transport in tissue," Ph.D. thesis (University of Texas at Austin, 1998).
  30. I. Dayan, S. Havlin, and G. H. Weiss, "Photon migration in a two-layer turbid medium: a diffusion analysis," J. Mod. Opt. 39, 1567-1582 (1992). [CrossRef]
  31. P. Kubelka and F. Munk, "Ein Beitrag zur Optik der Farbanstriche," Z. Tech. Phys. (Leipzig) 12, 593-601 (1931). English translation by Steve Westin, http:www.graphics.cornell.edu/~westin/pubs/kubelka.pdf.
  32. P. Kubelka, "New contributions to the optics of intensely light-scattering materials. Part II: Non-homogeneous layers," J. Opt. Soc. Am. 44, 330-335 (1954). [CrossRef]
  33. M. Birkinshaw, "Radially symmetric Fourier transforms," in Astronomical Data Analysis Software and Systems III, Vol. 61 of ASP Conference Series (Astronomical Society of the Pacific, 1994), pp. 249-252.
  34. S. Eda and E. Okada, "Monte Carlo analysis of near-infrared light propagation in a neonatel head model," Syst. Comput. Japan 35, 60-69 (2004); S. Eda and E. Okada,[Denshi Joho Tsushin Gakkai Ronbunshi J84-D-II, 2654-2661 (2001)]. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited