OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 7 — Jul. 17, 2006

Numerical calculation of interparticle forces arising in association with holographic assembly

Stephen H. Simpson and Simon Hanna  »View Author Affiliations


JOSA A, Vol. 23, Issue 6, pp. 1419-1431 (2006)
http://dx.doi.org/10.1364/JOSAA.23.001419


View Full Text Article

Enhanced HTML    Acrobat PDF (980 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent advances in dynamic holography have resulted in spatial light modulators capable of producing an almost limitless variety of field distributions from a single incident beam. Holographic assembly is a technique that exploits this capability to generate and control multiple foci that can be used to trap and manipulate nanoparticles. Although the forces associated with conventional optical tweezers are well understood, the effects arising from the more complicated interactions associated with holographic assembly are not. We present a general and flexible method, based on T matrix theory, for investigating these effects and use it to calculate the forces between particles in a variety of optical environments.

© 2006 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(290.5850) Scattering : Scattering, particles

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 1, 2005
Manuscript Accepted: November 27, 2005

Virtual Issues
Vol. 1, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Stephen H. Simpson and Simon Hanna, "Numerical calculation of interparticle forces arising in association with holographic assembly," J. Opt. Soc. Am. A 23, 1419-1431 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-23-6-1419


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  2. J. E. Molloy and M. J. Padgett, "Lights, action: optical tweezers," Contemp. Phys. 43, 241-258 (2002). [CrossRef]
  3. K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004). [CrossRef]
  4. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000). [CrossRef]
  5. P. C. Mogensen and J. Glückstad, "Dynamic array generation and pattern formation for optical tweezers," Opt. Commun. 175, 75-81 (2000). [CrossRef]
  6. D. G. Grier, "A revolution in optical manipulation," Nature (London) 424, 810-816 (2003). [CrossRef]
  7. J. L. Deng, Q. Wei, and Y. Z. Wang, "Numerical modeling of optical levitation and trapping of 'stuck' particles with a pulsed optical tweezer," Opt. Express 13, 3673-3680 (2005). [CrossRef] [PubMed]
  8. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media, 2nd ed. (Noordhoff, 1973).
  9. J. Mahanty and B. W. Ninham, Dispersion Forces (Academic, 1976).
  10. J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed. (Academic, 1992).
  11. R. M. Mazo, Brownian Motion: Fluctuations, Dynamics and Applications (Clarendon, 2002).
  12. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975).
  13. F. Melia, Electrodynamics (University of Chicago Press, 2001).
  14. K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999). [CrossRef]
  15. R. C. Gauthier, "Computation of the optical trapping force using an FTDT based technique," Opt. Express 13, 3707-3718 (2005). [CrossRef] [PubMed]
  16. A. D. White, "Vector finite element modelling of optical tweezers," Comput. Phys. Commun. 128, 558-564 (2000). [CrossRef]
  17. C. Hafner, The Generalized Multiple Multipole Technique for Computational Electrodynamics (Artech House, 1990).
  18. L. Novotny, R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997). [CrossRef]
  19. B. Maheu, G. Grehan, and G. Gouesbet, "Laser beam scattering by individual spherical particles: numerical results and application to particle sizing," Part. Charact. 4, 141-146 (1987). [CrossRef]
  20. T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, "Numerical modelling of optical trapping," Comput. Phys. Commun. 142, 468-471 (2001). [CrossRef]
  21. T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, "Calculation and optical measurement of laser trapping forces on non-spherical particles," J. Quant. Spectrosc. Radiat. Transf. 70, 627-637 (2001). [CrossRef]
  22. T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, "Multipole expansion of strongly focused laser beams," J. Quant. Spectrosc. Radiat. Transf. 79, 1005-1017 (2003). [CrossRef]
  23. O. Moine and B. Stout, "Optical force calculations in arbitrary beams by use of the vector addition theorem," J. Opt. Soc. Am. B 22, 1620-1631 (2005). [CrossRef]
  24. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).
  25. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge U. Press, 2002).
  26. J. A. Lock and G. Gouesbet, "Rigorous justification of the localized approximation to the beam shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams," J. Opt. Soc. Am. A 11, 2503-2515 (1994). [CrossRef]
  27. H. C. van der Hulst, Light Scattering from Small Particles (Wiley, 1957).
  28. G. Gouesbet, J. A. Lock, and G. Grehan, "Partial wave representations of laser beams for use in light scattering calculations," Appl. Opt. 34, 2133-2143 (1995). [CrossRef] [PubMed]
  29. K. A. Fuller, "Scattering and absorption cross-sections of compounded spheres. I. Theory for external aggregation," J. Opt. Soc. Am. A 11, 3251-3260 (1994). [CrossRef]
  30. Y.-L. Xu, "Electromagnetic scattering by an aggregate of spheres," Appl. Opt. 34, 4573-4588 (1995). [CrossRef] [PubMed]
  31. D. W. Mackowski and M. I. Mishchenko, "Calculation of the T matrix and the scattering matrix for ensembles of spheres," J. Opt. Soc. Am. A 13, 2266-2278 (1996). [CrossRef]
  32. J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989). [CrossRef]
  33. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  34. J. M. Fernandez-Varea and R. Garcia-Molina, "Hamaker constants of systems involving water obtained from a dielectric function that fulfills the F sum rule," J. Colloid Interface Sci. 231, 394-397 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited