OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 7 — Jul. 17, 2006

Fiber-based single-channel polarization-sensitive spectral interferometry

Eunha Kim and Thomas E. Milner  »View Author Affiliations


JOSA A, Vol. 23, Issue 6, pp. 1458-1467 (2006)
http://dx.doi.org/10.1364/JOSAA.23.001458


View Full Text Article

Enhanced HTML    Acrobat PDF (316 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel, to our knowledge, fiber-based single-channel polarization-sensitive spectral interferometry system that provides depth-resolved measurement of polarization transformations of light reflected from a sample. Algebraic expressions for the Stokes parameters at the output of the interferometer are derived for light reflected from a birefringent sample by using the cross-spectral density function. By insertion of a fiber-optic spectral polarimetry instrument into the detection path of a common-path spectral interferometer, the full set of Stokes parameters of light reflected from a sample can be obtained with a single optical frequency scan. The methodology requires neither polarization-control components nor prior knowledge of the polarization state of light incident on the sample. The fiber-based single-channel polarization-sensitive spectral interferometer and analysis are demonstrated by measurement of phase retardation and fast-axis angle of a birefringent mica plate.

© 2006 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5410) Instrumentation, measurement, and metrology : Polarimetry

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 2, 2005
Manuscript Accepted: November 17, 2005

Virtual Issues
Vol. 1, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Eunha Kim and Thomas E. Milner, "Fiber-based single-channel polarization-sensitive spectral interferometry," J. Opt. Soc. Am. A 23, 1458-1467 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-23-6-1458


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  2. L. Mandel, "Concept of cross-spectral purity in coherence theory," J. Opt. Soc. Am. 51, 1342-1350 (1961). [CrossRef]
  3. L. Mandel and E. Wolf, "Spectral coherence and the concept of cross-spectral purity," J. Opt. Soc. Am. 66, 529-535 (1976). [CrossRef]
  4. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  5. J. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  6. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantages of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  7. G. Häusler and M. W. Lindner, "'Coherence radar' and 'spectral radar'—new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  8. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  9. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004). [CrossRef] [PubMed]
  10. A. F. Ferchher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  11. U. Schnell, E. Zimmermann, and R. Dändliker, "Absolute distance measurement with synchronously sampled white-light channelled spectrum interferometry," Pure Appl. Opt. 4, 643-651 (1995). [CrossRef]
  12. R. J. Sandeman, "Use of channeled spectra to measure absolute phase shift and dispersion in two beam interferometry," Appl. Opt. 10, 1087-1091 (1971). [CrossRef] [PubMed]
  13. V. N. Kumar and D. N. Rao, "Using interference in the frequency domain for precise determination of thickness and refractive indices of normal dispersive materials," J. Opt. Soc. Am. B 12, 1559-1563 (1995). [CrossRef]
  14. V. Chandrasekharan and H. Damany, "Anomalous dispersion of birefringence of sapphire and magnesium fluoride in the vacuum ultraviolet," Appl. Opt. 8, 671-675 (1969). [CrossRef] [PubMed]
  15. M. Medhat and S. Y. El-Zaiat, "Interferometric determination of the birefringence dispersion of anisotropic materials," Opt. Commun. 141, 145-149 (1997). [CrossRef]
  16. I. Zheng, O. A. Konoplev, and D. D. Meyerhofer, "Determination of the optical-axis orientation of a uniaxial crystal by frequency-domain interferometry," Opt. Lett. 22, 931-933 (1997). [CrossRef] [PubMed]
  17. X. D. Cao and D. D. Meyerhofer, "Frequency-domain interferometer for measurement of the polarization mode dispersion in single-mode optical fibers," Opt. Lett. 19, 1837-1839 (1994). [CrossRef] [PubMed]
  18. K. Oka and T. Kato, "Spectroscopic polarimetry with a channeled spectrum," Opt. Lett. 24, 1475-1477 (1999). [CrossRef]
  19. E. Kim, D. P. Dave, and T. E. Milner, "Fiber optic spectral polarimeter using a broadband swept laser source," Opt. Commun. 249, 351-356 (2005). [CrossRef]
  20. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagia, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002). [CrossRef]
  21. W. J. Walecki, D. N. Fittinghoff, A. L. Smirl, and R. Trebino, "Characterization of the polarization state of weak ultrashort coherent signals by dual-channel spectral interferometry," Opt. Lett. 22, 81-83 (1997). [CrossRef] [PubMed]
  22. Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagia, M. Takahashi, C. Katada, and M. Mutoh, "Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004). [CrossRef]
  23. J. Zhang, W. Jung, J. S. Nelson, and Z. Chen, "Full range polarization-sensitive Fourier domain optical coherence tomography," Opt. Express 12, 6033-6039 (2004). [CrossRef] [PubMed]
  24. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, "Common-path interferometer for frequency-domain optical coherence tomography," Appl. Opt. 42, 6953-6958 (2003). [CrossRef] [PubMed]
  25. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  26. J. P. Hamaker, J. D. Bregman, and R. J. Sault, "Understanding radio polarimetry. I. Mathematical foundation," Astron. Astrophys., Suppl. Ser. 117, 137-147 (1996). [CrossRef]
  27. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  28. F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, "Wavelength-tuning interferometry of intraocular distances," Appl. Opt. 36, 6548-6553 (1997). [CrossRef]
  29. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997). [CrossRef] [PubMed]
  30. A. Dutt and V. Rokhlin, "Fast Fourier transforms for nonequispaced data, II," Appl. Comput. Harmon. Anal. 2, 85-100 (1995). [CrossRef]
  31. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, "High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1357 (2000). [CrossRef]
  32. N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander III, and T. E. Milner, "Depth-resolved optic axis orientation in multiple layered anisotropic tissues measured with enhanced polarization-sensitive optical coherence tomography (EPS-OCT)," Opt. Express 13, 4507-4518 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited