Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Reconstructing a thin absorbing obstacle in a half-space of tissue

Not Accessible

Your library or personal account may give you access

Abstract

We solve direct and inverse obstacle-scattering problems in a half-space composed of a uniform absorbing and scattering medium. Scattering is sharply forward-peaked, so we use the modified Fokker–Planck approximation to the radiative transport equation. The obstacle is an absorbing inhomogeneity that is thin with respect to depth. Using the first Born approximation, we derive a method to recover the depth and shape of the absorbing obstacle. This method requires only plane-wave illumination at two incidence angles and a detector with a fixed numerical aperture. First we recover the depth of the obstacle through solution of a simple nonlinear least-squares problem. Using that depth, we compute a point-spread function explicitly. We use that point-spread function in a standard deconvolution algorithm to reconstruct the shape of the obstacle. Numerical results show the utility of this method even in the presence of measurement noise.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Light propagation in biological tissues containing an absorbing plate

Arnold D. Kim
Appl. Opt. 43(3) 555-563 (2004)

Transport theory for light propagation in biological tissue

Arnold D. Kim
J. Opt. Soc. Am. A 21(5) 820-827 (2004)

Beam propagation in sharply peaked forward scattering media

Arnold D. Kim and Miguel Moscoso
J. Opt. Soc. Am. A 21(5) 797-803 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (52)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.