OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008

Minimization of geometric-beam broadening in a grating-based time-domain delay line for optical coherence tomography application

Zhen Jiang, Quing Zhu, and Daqing Piao  »View Author Affiliations


JOSA A, Vol. 24, Issue 12, pp. 3808-3818 (2007)
http://dx.doi.org/10.1364/JOSAA.24.003808


View Full Text Article

Enhanced HTML    Acrobat PDF (1333 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper discusses a dispersion effect in a grating-based time-domain delay line that is different from the second- or higher-order dispersion in a grating-based Fourier-domain delay line. When the lateral broadening of the beam profile after grating dispersion exceeds the collection aperture of the reference fiber, the peripheral spectrum is decoupled by the fiber. The loss of reference spectral bandwidth by this geometric-beam broadening thus degrades the axial resolution. The polarizing-beam reflector used in the Fourier-domain delay line for suppression of lateral beam walk-off is implemented in this grating-based time-domain delay line to minimize geometric-beam broadening. Theoretical analysis and experiments are given to validate the axial resolution improvement after geometric-beam broadening is minimized. In vitro and in vivo imaging results are presented to demonstrate the improvement. It is also shown that geometric-beam broadening may exist in other optical coherence tomography reference arm configurations.

© 2007 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(080.2740) Geometric optics : Geometric optical design
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 14, 2007
Revised Manuscript: October 14, 2007
Manuscript Accepted: October 19, 2007
Published: November 28, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Zhen Jiang, Quing Zhu, and Daqing Piao, "Minimization of geometric-beam broadening in a grating-based time-domain delay line for optical coherence tomography application," J. Opt. Soc. Am. A 24, 3808-3818 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-24-12-3808


Sort:  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography," Opt. Lett. 21, 543-545 (1996). [CrossRef] [PubMed]
  3. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, "Forward-imaging instruments for optical coherence tomography," Opt. Lett. 22, 1618-1620 (1997). [CrossRef]
  4. N. G. Chen and Q. Zhu, "Rotary mirror array for high-speed optical coherence tomography," Opt. Lett. 27, 607-609 (2002). [CrossRef]
  5. J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, "Paired-angle-rotation scanning optical coherence tomography forward-imaging probe," Opt. Lett. 31, 1265-1267 (2006). [CrossRef] [PubMed]
  6. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, "Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography," Opt. Lett. 29, 1763-1765 (2004). [CrossRef] [PubMed]
  7. M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, "Retinal cone mosaic imaged with transverse scanning optical coherence tomography," Opt. Lett. 31, 1821-1823 (2006). [CrossRef] [PubMed]
  8. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000). [CrossRef]
  9. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  10. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  11. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). [CrossRef] [PubMed]
  12. Y. Watanabe, K. Yamada, and M. Sato, "Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography," Opt. Express 14, 5201-5209 (2006). [CrossRef] [PubMed]
  13. B. Povazay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, "Full-field time-encoded frequency-domain optical coherence tomography," Opt. Express 14, 7661-7669 (2006). [CrossRef] [PubMed]
  14. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase controldelay line," Opt. Lett. 22, 1811-1813 (1997). [CrossRef]
  15. A. Rollins, S. Yazdanfar, M. Kulkarni, R. Ung-Arunyawee, and J. Izatt, "In vivo video rate optical coherence tomography," Opt. Express 3, 219-229 (1998). [CrossRef] [PubMed]
  16. E. D. J. Smith, A. V. Zvyagin, and D. D. Sampson, "Real-time dispersion compensation in scanning interferometry," Opt. Lett. 27, 1998-2000 (2002). [CrossRef]
  17. A. V. Zvyagin, E. D. J. Smith, and D. D. Sampson, "Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry," J. Opt. Soc. Am. A 20, 333-341 (2003). [CrossRef]
  18. W. K. Niblack, J. O. Schenk, B. Liu, and M. E. Brezinski, "Dispersion in a grating-based optical delay line for optical coherence tomography," Appl. Opt. 42, 4115-4118 (2003). [CrossRef] [PubMed]
  19. Y. Chen and X. Li, "Dispersion management up to the third order for real-time optical coherence tomography involving a phase or frequency modulator," Opt. Express 12, 5968-5978 (2004). [CrossRef] [PubMed]
  20. K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, "Extended range, rapid scanning optical delay line for biomedical interferometric imaging," Electron. Lett. 35, 1404-1405 (1999). [CrossRef]
  21. D. Piao and Q. Zhu, "Power-efficient grating-based scanning optical delay line: time-domain configuration," Electron. Lett. 40, 97-98 (2004). [CrossRef]
  22. D. Piao and Q. Zhu, "Direct bi-directional angle-insensitive imaging of the flow signal intensity in Doppler optical coherence tomography," Appl. Opt. 44, 348-357 (2005). [CrossRef] [PubMed]
  23. D. Piao, L. L. Otis, and Q. Zhu, "Doppler angle and flow velocity mapping by combined Doppler shift and Doppler bandwidth measurements in optical Doppler tomography," Opt. Lett. 28, 1120-1122 (2003). [CrossRef] [PubMed]
  24. D. Piao, L. L. Otis, N. K. Dutta, and Q. Zhu, "Quantitative assessment of flow velocity estimation algorithms for optical Doppler tomography imaging," Appl. Opt. 41, 6118-6127 (2002). [CrossRef] [PubMed]
  25. C. Akcay, P. Parrein, and J. P. Rolland, "Estimation of axial resolution in optical coherence imaging," Appl. Opt. 41, 5256-5262 (2002). [CrossRef] [PubMed]
  26. C. C. Rosa, J. Rogers, and A. G. Podoleanu, "Fast scanning transmissive delay line for optical coherence tomography," Opt. Lett. 30, 3263-3265 (2005). [CrossRef]
  27. C. C. Rosa, J. Rogers, J. Pedro, R. Rosen, and A. Podoleanu, "Multiscan time-domain optical coherence tomography for retina imaging," Appl. Opt. 46, 1795-1808 (2007). [CrossRef] [PubMed]
  28. I. Zeylikovich, A. Gilerson, and R. R. Alfano, "Nonmechanical grating-generated scanning coherence microscopy," Opt. Lett. 23, 1797-1799 (1998). [CrossRef]
  29. Y. Watanabe, K. Yamada, and M. Sato, "In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera," Opt. Commun. 261, 376-380 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited