OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008

Classification images for simple detection and discrimination tasks in correlated noise

Craig K. Abbey and Miguel P. Eckstein  »View Author Affiliations

JOSA A, Vol. 24, Issue 12, pp. B110-B124 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1517 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use the classification image technique to investigate the effect of white noise and various correlated Gaussian noise textures (low-pass, high-pass, and band-pass) on observer performance in detection and discrimination tasks. For these tasks, performance is generally enhanced by an observer’s ability to “prewhiten” correlated noise as part of the formation of a decision variable. We find that observer efficiency in these tasks is well represented by the measured classification images and that human observers show strong evidence of adaptation to different correlated noise textures. This adaptation is captured in the frequency weighting of the classification images.

© 2007 Optical Society of America

OCIS Codes
(110.3000) Imaging systems : Image quality assessment
(330.1880) Vision, color, and visual optics : Detection
(330.4060) Vision, color, and visual optics : Vision modeling

Original Manuscript: June 4, 2007
Revised Manuscript: August 7, 2007
Manuscript Accepted: August 17, 2007
Published: October 8, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Craig K. Abbey and Miguel P. Eckstein, "Classification images for simple detection and discrimination tasks in correlated noise," J. Opt. Soc. Am. A 24, B110-B124 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. A. P. Pentland, "Fractal-based description of natural scenes," IEEE Trans. Pattern Anal. Mach. Intell. 6, 661-673 (1984). [CrossRef]
  2. G. J. Burton and I. R. Moorhead, "Color and spatial structure in natural scenes," Appl. Opt. 26, 157-70 (1987). [CrossRef] [PubMed]
  3. D. J. Field, "Relations between the statistics of natural images and the response properties of cortical cells," J. Opt. Soc. Am. A 4, 2379-2394 (1987). [CrossRef] [PubMed]
  4. D. J. Tolhurst, Y. Tadmor, and T. Chao, "Amplitude spectra of natural images," Ophthalmic Physiol. Opt. 12, 229-232 (1992). [CrossRef] [PubMed]
  5. D. L. Ruderman and W. Bialek, "Statistics of natural images, scaling in the woods," Phys. Rev. Lett. 73, 814-817 (1994). [CrossRef] [PubMed]
  6. A. van der Schaaf and J. H. van Hateren, "Modelling the power spectra of natural images: statistics and information," Vision Res. 36, 2759-2770 (1996). [CrossRef] [PubMed]
  7. D. L. Ruderman, "Origins of scaling in natural images," Proc. SPIE 2657, 120-131 (1996). [CrossRef]
  8. G. Revesz, H. L. Kundel and M. A. Graber, "The influence of structured noise on the detection of radiologic abnormalities," Am. J. Roentgenol. 9, 479-486 (1974).
  9. H. L. Kundel and G. Revesz, "Lesion conspicuity, structured noise, and film reader error," AJR, Am. J. Roentgenol. 126, 1233-1238 (1976).
  10. H. H. Barrett, "Objective assessment of image quality: effects of quantum noise and object variability," J. Opt. Soc. Am. A 7, 1266-1278 (1990). [CrossRef] [PubMed]
  11. H. H. Barrett, S. K. Gordon, and R. S. Hershel, "Statistical limitations in transaxial tomography," Comput. Biol. Med. 6, 307-323 (1976). [CrossRef] [PubMed]
  12. S. J. Riederer, N. J. Pelc, and D. A. Chessler, "The noise power spectrum in computed x-ray tomography," Phys. Med. Biol. 23, 446-454 (1978). [CrossRef] [PubMed]
  13. H. H. Barrett and W. Swindell, Radiological Imaging: The Theory of Image Formation, Detection, and Processing (Academic, 1981).
  14. A. E. Burgess, F. L. Jacobson, and P. F. Judy, "Human observer detection experiments with mammograms and power-law noise" Med. Phys. 28, 419-437 (2001). [CrossRef] [PubMed]
  15. K. J. Myers, H. H. Barrett, M. C. Borgstrom, D. D. Patton, and G. W. Seeley, "The effect of noise correlation on detectability of disk signals in medical imaging," J. Opt. Soc. Am. A 2, 1752-1759 (1985). [CrossRef] [PubMed]
  16. R. D. Fiete, H. H. Barrett, W. E. Smit, and K. J. Myers, "Hotelling trace criterion and its correlation with human-observer performance," J. Opt. Soc. Am. A 4, 945-953 (1987). [CrossRef] [PubMed]
  17. J. P. Rolland and H. H. Barrett, "Effect of random background inhomogeneity on observer detection performance," J. Opt. Soc. Am. A 9, 649-658 (1992). [CrossRef] [PubMed]
  18. A. E. Burgess, "Statistically defined backgrounds, performance of a modified nonprewhitening observer model," J. Opt. Soc. Am. A 11, 1237-1242 (1994). [CrossRef]
  19. A. E. Burgess, X. Li, and C. K. Abbey, "Visual signal detectability with two noise components: anomalous masking effects," J. Opt. Soc. Am. A 14, 2420-2442 (1997). [CrossRef]
  20. A. E. Burgess, "Visual signal detection with two-component noise: low-pass spectrum effects," J. Opt. Soc. Am. A 16, 694-704 (1999). [CrossRef]
  21. M. A. Webster and E. Miyahara, "Contrast adaptation and the spatial structure of natural images," J. Opt. Soc. Am. A 14, 2355-2366 (1997). [CrossRef]
  22. K. J. Myers and H. H. Barrett, "The addition of a channel mechanism to the ideal-observer model," J. Opt. Soc. Am. A 4, 2447-2457 (1987). [CrossRef]
  23. F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Visual signal detection in structured backgrounds. III. Calculation of figures of merit for model observers in statistically nonstationary backgrounds," J. Opt. Soc. Am. A 17, 193-205 (2000). [CrossRef]
  24. J. A. Solomon, "Channel selection with non-white-noise masks," J. Opt. Soc. Am. A 17, 986-993 (2000). [CrossRef]
  25. H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers, "Model observers for assessment of image quality." Proc. Natl. Acad. Sci. U.S.A. 90, 9758-9765 (1993). [CrossRef]
  26. C. K. Abbey and H. H. Barrett, "Human- and model-observer performance in ramp-spectrum noise, effects of regularization and object variability," J. Opt. Soc. Am. A 18, 473-488 (2001). [CrossRef]
  27. A. J. Ahumada and J. Lovell, "Stimulus features in signal detection," J. Acoust. Soc. Am. 49, 1751-1756 (1971). [CrossRef]
  28. A. J. Ahumada, R. Marken, and A. Sandusky, "Time and frequency analyses of auditory signal detection." J. Acoust. Soc. Am. 57, 385-390 (1975). [CrossRef]
  29. A. J. Ahumada, "Perceptual classification images from Vernier acuity masked by noise," Perception 25, ECVP Abstract Suppl. (1996).
  30. B. L. Beard and A. J. Ahumada, "A technique to extract relevant image features for visual tasks," Proc. SPIE 3299, 79-85 (1998). [CrossRef]
  31. D. Q. Nykamp and D. L. Ringach, "Full identification of a linear-nonlinear system via cross-correlation analysis," J. Vision 2, 1-11 (2002). [CrossRef]
  32. C. K. Abbey and M. P. Eckstein, "Classification image analysis, Estimation and statistical inference for two-alternative forced-choice experiments," J. Vision 2, 66-78 (2002). [CrossRef]
  33. R. F. Murray, P. J. Bennett, and A. B. Sekuler, "Optimal methods for calculating classification images, weighted sums," J. Vision 2, 79-104 (2002). [CrossRef]
  34. C. K. Abbey and M. P. Eckstein, "Optimal shifted estimates of human-observer templates in two-alternative forced-choice experiments," IEEE Trans. Med. Imaging 21, 429-440 (2002). [CrossRef] [PubMed]
  35. A. E. Burgess and H. Ghandeharian, "Visual signal detection II. Signal location identification," J. Opt. Soc. Am. A 1, 906-910 (1984). [CrossRef] [PubMed]
  36. C. K. Abbey and M. P. Eckstein, "Estimates of human-observer templates for simple detection tasks in correlated noise," Proc. SPIE 3981, 70-77 (2000). [CrossRef]
  37. R. F. Murray, P. J. Bennett, and A. B. Sekuler, "Classification images predict absolute efficiency," J. Vision 5, 139-149 (2005). [CrossRef]
  38. D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, 1966).
  39. C. K. Abbey and M. P. Eckstein, "Classification images for detection, contrast discrimination, and identification tasks with a common ideal observer," J. Vision 6, 335-355 (2006). [CrossRef]
  40. W. P. Tanner and T. G. Birdsall, "Definitions of d′ and η as psychophysical measures," J. Acoust. Soc. Am. 30, 922-928 (1958). [CrossRef]
  41. A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, "Efficiency of human visual signal discrimination," Science 214, 93-94 (1981). [CrossRef] [PubMed]
  42. D. G. Pelli, "Effects of visual noise," Doctoral dissertation (Cambridge University, Cambridge (1981).
  43. F. W. Campbell and J. G. Robson, "Application of Fourier analysis to the visibility of gratings," J. Physiol. (London) 197, 551-566 (1968).
  44. C. Blakemore and F. W. Campbell, "On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images," J. Physiol. (London) 203, 237-260 (1969).
  45. C. F. Stromeyer, III and S. A. Klein, "Spatial frequency channels in human vision as asymmetric (edge) mechanisms," Vision Res. 14, 1409-1420 (1974). [CrossRef] [PubMed]
  46. S. A. Klein, "Measuring, estimating, and understanding the psychometric function: a commentary," Percept. Psychophys. 63, 1421-1455 (2001). [CrossRef]
  47. A. J. Ahumada, "Putting the visual system noise back in the picture," J. Opt. Soc. Am. A 4, 2372-2378 (1987). [CrossRef] [PubMed]
  48. P. Neri and D. J. Heeger, "Spatiotemporal mechanisms for detecting and identifying image features in human vision," Nat. Neurosci. 5, 812-816 (2002). [PubMed]
  49. B. S. Tjan and A. S. Nandy, "Classification images with uncertainty," J. Vision 6, 387-413 (2006). [CrossRef]
  50. C. K. Abbey, M. P. Eckstein, and F. O. Bochud, "Estimation of human-observer templates for 2 alternative forced choice tasks," Proc. SPIE 3663, 284-295 (1999). [CrossRef]
  51. C. K. Abbey and M. P. Eckstein, "Classification images of bandpass mechanisms across noise spectral density," J. Vision 6, 116 (abstract) (2006). [CrossRef]
  52. A. H. Baydush and C. E. Floyd, "Improved image quality in digital mammography with image processing," Med. Phys. 27, 1503-1508 (2000). [CrossRef] [PubMed]
  53. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (SIAM, 1988).
  54. Note that Murray describe cross correlation with the template of the ideal observer. This is correct only for the white-noise case they considered.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited