OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008

Signal and noise transfer in spatiotemporal quantum-based imaging systems

Reza Akbarpour, Saul N. Friedman, Jeffrey H. Siewerdsen, John D. Neary, and Ian A. Cunningham  »View Author Affiliations


JOSA A, Vol. 24, Issue 12, pp. B151-B164 (2007)
http://dx.doi.org/10.1364/JOSAA.24.00B151


View Full Text Article

Enhanced HTML    Acrobat PDF (366 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fourier-based transfer theory is extended into the temporal domain to describe both spatial and temporal noise processes in quantum-based medical imaging systems. Lag is represented as a temporal scatter in which the release of image quanta is delayed according to a probability density function. Expressions describing transfer of the spatiotemporal Wiener noise power spectrum through quantum gain and scatter processes are derived. Lag introduces noise correlations in the temporal domain in proportion to the correlated noise component only. The effect of lag is therefore dependent on both spatial and temporal physical processes. A simple model of a fluoroscopic system shows that image noise is reduced by a factor that is similar to Wagner’s information bandwidth integral, which depends on the temporal modulation transfer function.

© 2007 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(030.4280) Coherence and statistical optics : Noise in imaging systems
(040.7480) Detectors : X-rays, soft x-rays, extreme ultraviolet (EUV)
(110.4850) Imaging systems : Optical transfer functions
(110.7440) Imaging systems : X-ray imaging
(170.0110) Medical optics and biotechnology : Imaging systems

History
Original Manuscript: May 8, 2007
Manuscript Accepted: August 31, 2007
Published: October 17, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Reza Akbarpour, Saul N. Friedman, Jeffrey H. Siewerdsen, John D. Neary, and Ian A. Cunningham, "Signal and noise transfer in spatiotemporal quantum-based imaging systems," J. Opt. Soc. Am. A 24, B151-B164 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-24-12-B151


Sort:  Year  |  Journal  |  Reset  

References

  1. J. C. Dainty and R. Shaw, Image Science (Academic, 1974).
  2. R. Shaw, "The equivalent quantum efficiency of the photographic process," J. Photogr. Sci. 11, 199-204 (1963).
  3. A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, 1968).
  4. G. M. Jenkins and D. G. Watts, Spectral Analysis and Its Applications (Holden-Day, 1968).
  5. R. Shaw, "Some fundamental properties of xeroradiographic images," Proc. SPIE 70, 359-363 (1975).
  6. R. F. Wagner and E. P. Muntz, "Detective quantum efficiency (DQE) analysis of electrostatic imaging and screen-film imaging in mammography," Proc. SPIE 173, 162-165 (1979).
  7. M. J. Tapiovaara and R. F. Wagner, "A generalized detective quantum efficiency (DQE) approach to the analysis of x-ray imaging," Proc. SPIE 454, 540-549 (1984).
  8. M. J. Tapiovaara and R. F. Wagner, "SNR and DQE analysis of broad spectrum x-ray imaging," Phys. Med. Biol. 30, 519-529 (1985). [CrossRef]
  9. M. Rabbani, R. Shaw, and R. V. Matter, "Detective quantum efficiency of imaging systems with amplifying and scattering mechanisms," J. Opt. Soc. Am. A 4, 895-901 (1987). [CrossRef] [PubMed]
  10. H. H. Barrett and W. Swindell, Radiological Imaging (Academic, 1981).
  11. H. H. Barrett, R. F. Wagner, and K. J. Myers, "Correlated point processes in radiological imaging," Proc. SPIE 3032, 110-125 (1997). [CrossRef]
  12. J. Yao and I. A. Cunningham, "Parallel cascade: new ways to describe noise transfer in medical imaging systems," Med. Phys. 28, 2020-2038 (2001). [CrossRef] [PubMed]
  13. G. Hajdok, J. Yao, J. J. Battista, and I. A. Cunningham, "Signal and noise transfer properties of photoelectric interactions in diagnostic x-ray imaging detectors," Med. Phys. 33, 3601-3620 (2006). [CrossRef] [PubMed]
  14. M. Sattarivand and I. A. Cunningham, "Computational engine for development of complex cascade models of signal and noise in X-ray imaging systems," IEEE Trans. Med. Imaging 24, 211-222 (2005). [CrossRef] [PubMed]
  15. I. A. Cunningham and R. Shaw, "Signal-to-noise optimization of medical imaging systems," J. Opt. Soc. Am. A 16, 621-632 (1999). [CrossRef]
  16. P. C. Bunch, K. E. Huff, and R. L. V. Metter, "Analysis of the detective quantum efficiency of a radiographic screen-film combination," J. Opt. Soc. Am. A 4, 902-909 (1987). [CrossRef] [PubMed]
  17. R. M. Nishikawa and M. J. Yaffe, "Effect of various noise sources on the detective quantum efficiency of phosphor screens," Med. Phys. 17, 887-893 (1990). [CrossRef] [PubMed]
  18. D. W. Mah, J. A. Rowlands, and J. A. Rawlinson, "Measurement of quantum noise in fluoroscopic systems for portal imaging," Med. Phys. 23, 231-238 (1996). [CrossRef] [PubMed]
  19. J. H. Siewerdsen, L. E. Antonuk, Y. el Mohri, J. Yorkston, W. Huang, J. M. Boudry, and I. A. Cunningham, "Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology," Med. Phys. 24, 71-89 (1997). [CrossRef] [PubMed]
  20. T. Falco and B. G. Fallone, "Characteristics of metal-plate/film detectors at therapy energies. II. Detective quantum efficiency," Med. Phys. 25, 2463-2468 (1998). [CrossRef]
  21. J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, and I. A. Cunningham, "Signal, noise power spectrum and detective quantum efficiency of indirect-detection flat-panel imagers for diagnostic radiology," Med. Phys. 25, 614-628 (1998). [CrossRef] [PubMed]
  22. J. H. Siewerdsen and D. A. Jaffray, "A ghost story: spatio-temporal response characteristics of an indirect- detection flat-panel imager," Med. Phys. 26, 1624-1641 (1999). [CrossRef] [PubMed]
  23. W. Zhao, W. G. Ji, and J. A. Rowlands, "Effects of characteristic x rays on the noise power spectra and detective quantum efficiency of photoconductive x-ray detectors," Med. Phys. 28, 2039-2049 (2001). [CrossRef] [PubMed]
  24. J. G. Mainprize, D. C. Hunt, and M. J. Yaffe, "Direct conversion detectors: the effect of incomplete charge collection on detective quantum efficiency," Med. Phys. 29, 976-990 (2002). [CrossRef] [PubMed]
  25. A. Ganguly, S. Rudin, D. R. Bednarek, and K. R. Hoffmann, "Micro-angiography for neuro-vascular imaging. II. Cascade model analysis," Med. Phys. 30, 3029-3039 (2003). [CrossRef] [PubMed]
  26. S. Suryanarayanan, A. Karellas, S. Vedantham, and I. Sechopoulos, "Theoretical analysis of high-resolution digital mammography," Phys. Med. Biol. 51, 3041-3055 (2006). [CrossRef] [PubMed]
  27. Y. El-Mohri, L. E. Antonuk, Q. Zhao, Y. Wang, Y. Li, H. Du, and A. Sawant, "Performance of a high, fill factor indirect detection prototype flat-panel imager for mammography," Med. Phys. 34, 315-327 (2007). [CrossRef] [PubMed]
  28. D. C. Hunt, K. Tanioka, and J. A. Rowlands, "X-ray imaging using avalanche multiplication in amorphous selenium: Investigation of depth dependent avalanche noise," Med. Phys. 34, 976-986 (2007). [CrossRef] [PubMed]
  29. S. Richard and J. H. Siewerdsen, "Optimization of dual-energy imaging systems using generalized NEQ and imaging task," Med. Phys. 34, 127-139 (2007). [CrossRef] [PubMed]
  30. J. H. Siewerdsen, I. A. Cunningham, and D. A. Jaffray, "A framework for noise-power spectrum analysis of multidimensional images," Med. Phys. 29, 2655-2671 (2002). [CrossRef] [PubMed]
  31. G. Murphy, W. Bitler, J. Coffin, and R. Langdon, "Lag vs. noise in fluoroscopic imaging," Proc. SPIE 1896, 174-179 (1993). [CrossRef]
  32. Y. Matsunaga, F. Hatori, T. Hiroyuki, and O. Yoshida, "Analysis of signal to noise ratio of photoconductive layered solid-state imaging device," IEEE Trans. Electron Devices 42, 38-42 (1995). [CrossRef]
  33. P. R. Granfors and R. Aufrichtig, "DQE(f) of an amorphous silicon flat panel x-ray detector: detector parameter influences and measurement methodology," Proc. SPIE 3977, 2-13 (2000). [CrossRef]
  34. I. A. Cunningham, T. Moschandreou, and V. Subotic, "The detective quantum efficiency of fluoroscopic systems: The case for a spatialtemporal approach (or, Does the ideal observer have infinite patience?)," Proc. SPIE 4320, 479-488 (2001). [CrossRef]
  35. P. R. Granfors, R. Aufrichtig, G. E. Possin, B. W. Giambattista, Z. S. Huang, J. Liu, and B. Ma, "Performance of a 41×41cm2 amorphous silicon flat panel x-ray detector designed for angiographic and R&F imaging applications," Med. Phys. 30, 2715-2726 (2003). [CrossRef] [PubMed]
  36. H. H. Barrett and K. Myers, Image Science: Mathematical and Statistical Foundations (Wiley, 2004).
  37. R. F. Wagner, "Toward a unified view of radiological imaging systems. Part II: Noisy images," Med. Phys. 4, 279-296 (1977). [CrossRef] [PubMed]
  38. R. F. Wagner, D. G. Brown, and M. S. Pastel, "Application of information theory to the assessment of computed tomography," Med. Phys. 6, 83-94 (1979). [CrossRef] [PubMed]
  39. W. Zhao and J. A. Rowlands, "Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency," Med. Phys. 24, 1819-33 (1997). [CrossRef]
  40. I. A. Cunningham, M. S. Westmore, and A. Fenster, "A spatial-frequency dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems," Med. Phys. 21, 417-427 (1994). [CrossRef] [PubMed]
  41. I. A. Cunningham, Handbook of Medical Imaging: Volume 1. Physics and Psychophysics (SPIE, 2000), Chap. 2.
  42. P. Xue, R. Aufrichtig, and D. L. Wilson, "Detectability of moving objects in fluoroscopy," Proc. SPIE 2712, 2-8 (1996). [CrossRef]
  43. P. Xue and D. L. Wilson, "Effects of motion blurring in x-ray fluoroscopy," Med. Phys. 25, 587-599 (1998). [CrossRef] [PubMed]
  44. P. Xue and D. L. Wilson, "Detection of moving objects in pulsed-x-ray fluoroscopy," J. Opt. Soc. Am. A 15, 375-388 (1998). [CrossRef]
  45. R. Aufrichtig, C. W. Thomas, P. Xue, and D. L. Wilson, "Model for perception of pulsed fluoroscopy image sequences," J. Opt. Soc. Am. A 11, 3167-76 (1994). [CrossRef]
  46. R. Aufrichtig, P. Xue, C. W. Thomas, G. C. Gilmore, and D. L. Wilson, "Perceptual comparison of pulsed and continuous fluoroscopy," Med. Phys. 21, 245-256 (1994). [CrossRef] [PubMed]
  47. K. N. Jabri and D. L. Wilson, "Detection improvement in spatially filtered x-ray fluoroscopy image sequences," J. Opt. Soc. Am. A 16, 742-749 (1999). [CrossRef]
  48. D. L. Wilson and R. Manjeshwar, "Role of phase information and eye pursuit in the detection of moving objects in noise," J. Opt. Soc. Am. A 16, 669-678 (1999). [CrossRef]
  49. K. N. Jabri and D. L. Wilson, "Quantitative assessment of image quality enhancement due to unsharp-mask processing in x-ray fluoroscopy," J. Opt. Soc. Am. A 19, 1297-1307 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited