OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008

Signal detection in power-law noise: effect of spectrum exponents

Arthur E. Burgess and Philip F. Judy  »View Author Affiliations

JOSA A, Vol. 24, Issue 12, pp. B52-B60 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (289 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Many natural backgrounds have approximately isotropic power spectra of the power-law form, P ( f ) = K f β , where f is radial frequency. For natural scenes and mammograms, the values of the exponent, β, range from 1.5 to 3.5. The ideal observer model predicts that for signals with certain properties and backgrounds that can be treated as random noise, a plot of log (contrast threshold) versus log (signal size) will be linear with slope, m, given by: m = ( β 2 ) 2 . This plot is referred to as a contrast-detail (CD) diagram. It is interesting that this predicts a detection threshold that is independent of signal size for β equal to 2. We present two-alternative forced-choice (2AFC) detection results for human and channelized model observers of a simple signal in filtered noise with exponents from 1.5 to 3.5. The CD diagram results are in good agreement with the prediction of this equation.

© 2007 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1880) Vision, color, and visual optics : Detection
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5510) Vision, color, and visual optics : Psychophysics

Original Manuscript: March 5, 2007
Revised Manuscript: July 4, 2007
Manuscript Accepted: July 10, 2007
Published: September 26, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Arthur E. Burgess and Philip F. Judy, "Signal detection in power-law noise: effect of spectrum exponents," J. Opt. Soc. Am. A 24, B52-B60 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. J. A. Swets, Signal Detection and Recognition by Human Observers (Wiley, 1964).
  2. D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, 1966). (Reprinted by Peninsula, 1988.)
  3. W. P. Tanner and T. G. Birdsall, "Definitions of d′ and η as psychophysical measures," J. Acoust. Soc. Am. 30, 922-928 (1958). [CrossRef]
  4. A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, "Efficiency of human visual discrimination," Science 214, 93-94 (1981). [CrossRef] [PubMed]
  5. J. Nachmias and R. V. Sansbury, "Grating contrast: discrimination may be better than detection," Vision Res. 14, 1039-1042 (1973). [CrossRef]
  6. A. E. Burgess and H. Ghandeharian, "Visual signal detection. II. Signal-location identification," J. Opt. Soc. Am. A 1, 906-910 (1984). [CrossRef] [PubMed]
  7. H. B. Barlow, "The efficiency of detecting changes in density in random dot patterns," Vision Res. 18, 637-650 (1977). [CrossRef]
  8. A. E. Burgess, "Visual signal detection. III. On Bayesian use of prior knowledge and cross-correlation," J. Opt. Soc. Am. A 2, 1498-1507 (1985). [CrossRef] [PubMed]
  9. A. E. Burgess and B. Colborne, "Visual signal detection. IV. Observer inconsistency," J. Opt. Soc. Am. A 5, 617-627 (1988). [CrossRef] [PubMed]
  10. W. S. Geisler, "Sequential ideal-observer analysis of visual discriminations," Psychol. Rev. 96, 267-314 (1989). [CrossRef] [PubMed]
  11. A. J. Ahumada and B. L. Beard, "Image discrimination models predict detection in fixed but not random noise," J. Opt. Soc. Am. A 14, 2471-2478 (1997). [CrossRef]
  12. K. J. Myers, H. H. Barrett, M. C. Borgstrom, D. D. Patton, and G. W. Seeley, "Effect of noise correlation on detectability of disk signals in medical imaging," J. Opt. Soc. Am. A 2, 1752-1759 (1985). [CrossRef] [PubMed]
  13. J. P. Rolland and H. H. Barrett, "Effect of random background inhomogeneity on observer detection performance," J. Opt. Soc. Am. A 9, 649-658 (1992). [CrossRef] [PubMed]
  14. A. E. Burgess, X. Li, and C. K. Abbey, "Visual signal detectability with two noise components: anomalous masking effects," J. Opt. Soc. Am. A 14, 2420-2442 (1997). [CrossRef]
  15. A. E. Burgess, "Visual signal detectability with two-component noise: low-pass filter effects," J. Opt. Soc. Am. A 16, 694-704 (1999). [CrossRef]
  16. K. J. Myers and H. H. Barrett, "Addition of a channel mechanism to the ideal-observer model," J. Opt. Soc. Am. A 4, 2447-2457 (1987). [CrossRef] [PubMed]
  17. R. F. Wagner and K. E. Weaver, "An assortment of image quality indices for radiographic film-screen combinations—can they be resolved?" Proc. SPIE 35, 83-94 (1972).
  18. D. Field, "Relations between the statistics of natural scenes and the response of cortical cells," J. Opt. Soc. Am. A 4, 2379-2394 (1987). [CrossRef]
  19. A. Pentland, "Fractal-based descriptions of surfaces," in Natural Computation, W.Richards, ed. (MIT Press, 1988), pp. 279-299.
  20. D. L. Ruderman and W. Bialek, "Statistics of natural images: scaling in the woods," Phys. Rev. Lett. 73, 814-817 (1994). [CrossRef]
  21. M. A. Webster and E. Miyahara, "Contrast adaptation and the spatial structure of natural images," J. Opt. Soc. Am. A 14, 2355-2366 (1997). [CrossRef]
  22. H. B. Barlow, "Three points about lateral inhibition," in Sensory Communications, W.A.Rosenblith, ed. (MIT Press, 1961) pp. 782-786.
  23. B. Zheng, Y.-H. Chang, and D. Gur, "Adaptive computer-aided diagnosis scheme of digitized mammograms," Acad. Radiol. 3, 806-814 (1996). [CrossRef] [PubMed]
  24. F. O. Bochud, J. F. Valley, F. R. Verdun, C. Hessler, and P. Schnyder, "Estimate of the noisy component of anatomical backgrounds," Med. Phys. 26, 1365-1370 (1999). [CrossRef] [PubMed]
  25. A. E. Burgess, F. L. Jacobson, and P. F. Judy, "Human observer detection experiments with mammograms and power-law noise," Med. Phys. 28, 419-437 (2001). [CrossRef] [PubMed]
  26. J. J. Heine and R. P. Velthuizen, "Spectral analysis of full field digital mammography data," Med. Phys. 29, 647-661 (2002). [CrossRef] [PubMed]
  27. D. Chakraborty and H. L. Kundel, "Anomalous nodule visibility effects in mammographic images," Proc. SPIE 4324, 68-76 (2001). [CrossRef]
  28. A. E. Burgess, "Evaluation of detection model performance in power-law noise," Proc. SPIE 4324, 123-132 (2001). [CrossRef]
  29. J. P. Johnson, J. Lubin, J. S. Nafziger, and D. P. Chakraborty, "Visual discrimination modeling of lesion detectability," Proc. SPIE 4686, 248-255 (2002). [CrossRef]
  30. A. E. Burgess and P. F. Judy, "Detection in power-law noise: spectrum exponents and CD diagram slopes," Proc. SPIE 5034, 57-62 (2003). [CrossRef]
  31. J. P. Johnson, J. Lubin, J. S. Nafziger, E. A. Krupinski, and H. Roehrig, "Channelized model observer using a visual discrimination model," Proc. SPIE 5749, 199-210 (2005). [CrossRef]
  32. J. S. Nafziger, J. P. Johnson, and J. Lubin, "Effects of visual fixation cues on the detectability of simulated breast lesions," Proc. SPIE 5749, 566-571 (2005). [CrossRef]
  33. R. D. Fiete, H. H. Barrett, W. E. Smith, and K. J. Myers, "Hotelling trace criterion and its correlation with human-observer performance," J. Opt. Soc. Am. 4, 945-953 (1987). [CrossRef]
  34. H. H. Barrett, C. K. Abbey, B. Gallas, and M. P. Eckstein, "Stabilized estimates of Hotelling observer detection performance in patient structured noise," Proc. SPIE 3340, 27-43 (1998). [CrossRef]
  35. A. B. Watson and D. Pelli, "QUEST: a Bayesian adaptive psychometric method," Percept. Psychophys. 33, 113-20 (1983). [CrossRef] [PubMed]
  36. A. E. Burgess, "Comparison of ROC and forced-choice observer performance measurement methods," Med. Phys. 22, 643-55 (1995). [CrossRef] [PubMed]
  37. H. L. Kundel, C. F. Nodine, L. Toto, and S. Lauver, "A circle cue enhances detection of simulated masses on mammographic backgrounds," Proc. SPIE 3032, 81-84 (1997). [CrossRef]
  38. P. F. Judy and R. G. Swennson, "Detectability of lesions of various sizes on CT images," Proc. SPIE 535, 38-42 (1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited