OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 3 — Mar. 7, 2007

Development and numerical solution of a mechanistic model for corneal tissue ablation with the 193 nm argon fluoride excimer laser

Brian T. Fisher and David W. Hahn  »View Author Affiliations


JOSA A, Vol. 24, Issue 2, pp. 265-277 (2007)
http://dx.doi.org/10.1364/JOSAA.24.000265


View Full Text Article

Enhanced HTML    Acrobat PDF (227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We detail the development and implementation of a global ablation model that incorporates a dynamically changing tissue absorption coefficient. Detailed spectroscopic measurements rule out plasma-shielding effects during the laser–tissue interaction and thereby support a photochemical mechanism. The model predicts ablation rate behavior that agrees well with a variety of experimental ablation rate data and that substantially deviates from a static Beer–Lambert model. The dynamic model predicts an enhancement in the tissue absorption coefficient of about 25%–50% as compared with the initial, static value. In addition, the model predicts an increase in the tissue ablation rate as corneal hydration increases, which may provide additional insight into variations in refractive surgery outcome.

© 2007 Optical Society of America

OCIS Codes
(330.4060) Vision, color, and visual optics : Vision modeling
(350.3450) Other areas of optics : Laser-induced chemistry

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: May 8, 2006
Revised Manuscript: August 3, 2006
Manuscript Accepted: August 30, 2006

Virtual Issues
Vol. 2, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Brian T. Fisher and David W. Hahn, "Development and numerical solution of a mechanistic model for corneal tissue ablation with the 193 nm argon fluoride excimer laser," J. Opt. Soc. Am. A 24, 265-277 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-24-2-265


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Paltauf and P. E. Dyer, "Photochemical processes and effects in ablation," Chem. Rev. (Washington, D.C.) 103, 487-518 (2003). [CrossRef]
  2. A. Vogel and V. Venugopalan, "Mechanisms of pulsed laser ablation of biological tissues," Chem. Rev. (Washington, D.C.) 103, 577-644 (2003). [CrossRef]
  3. F. Manns, P. Milne, and J. M. Parel, "Ultraviolet corneal photoablation," J. Refract. Surg. 18, 1-5 (2002).
  4. G. H. Pettit and R. Sauerbrey, "Pulsed ultraviolet laser ablation," Appl. Phys. A 56, 51-63 (1993). [CrossRef]
  5. J. V. McGrann, J. Neev, and M. W. Berns, "Physical characteristics of excimer laser-tissue interactions," in Laser-Tissue Interaction III, S. L. Jacques, ed., Proc. SPIE 1646, 56-68 (1992).
  6. B. T. Fisher and D. W. Hahn, "Measurement of small-signal absorption coefficient and absorption cross section of collagen for 193-nm excimer laser light and the role of collagen in tissue ablation," Appl. Opt. 43, 5443-5451 (2004). [CrossRef] [PubMed]
  7. C. A. Puliafito, R. F. Steinert, T. F. Deutsch, F. Hillenkamp, E. J. Dehm, and C. M. Adler, "Excimer laser ablation of the cornea and lens: experimental studies," Ophthalmology 92, 741-748 (1985). [PubMed]
  8. C. A. Puliafito, K. Wong, and R. F. Steinert, "Quantitative and ultrastructural studies of excimer laser ablation of the cornea at 193 and 248 nanometers," Lasers Surg. Med. 7, 155-159 (1987). [CrossRef] [PubMed]
  9. A. Lembares, X.-H. Hu, and G. W. Kalmus, "Absorption spectra of corneas in the far ultraviolet region," Invest. Ophthalmol. Visual Sci. 38, 1283-1387 (1997).
  10. Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, "Physical problems of excimer laser cornea ablation," Opt. Eng. 32, 2481-2486 (1993). [CrossRef]
  11. G. H. Pettit and M. N. Ediger, "Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation," Appl. Opt. 35, 3386-3391 (1996). [CrossRef] [PubMed]
  12. A. D. Yablon, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, "Measurement of tissue absorption coefficients by use of interferometric photothermal spectroscopy," Appl. Opt. 38, 1259-1272 (1999). [CrossRef]
  13. V. N. Tokarev, J. G. Lunney, W. Marine, and M. Sentis, "Analytical thermal model of ultraviolet laser ablation with single-photon absorption in the plume," J. Appl. Phys. 78, 1241-1246 (1995). [CrossRef]
  14. E. Sutcliffe and R. Srinivasan, "Dynamics of UV laser ablation of organic polymer surfaces," J. Appl. Phys. 60, 3315-3322 (1986). [CrossRef]
  15. R. Srinivasan, B. Braren, D. E. Seeger, and R. W. Dreyfus, "Photochemical cleavage of a polymeric solid--details of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193-nm and 248-nm," Macromolecules 19, 916-921 (1986). [CrossRef]
  16. B. Lukyanchuk, N. Bityurin, S. Anisimov, N. Arnold, and D. Bauerle, "The role of excited species in ultraviolet-laser materials ablation. 3. Non-stationary ablation of organic polymers," Appl. Phys. A 62, 397-401 (1996). [CrossRef]
  17. J. R. Jimenez, R. G. Anera, and L. J. del Barco, "Equation for corneal asphericity after corneal refractive surgery," J. Refract. Surg. 19, 65-69 (2003). [PubMed]
  18. R. G. Anera, J. R. Jimenez, L. J. del Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea," Opt. Lett. 28, 417-419 (2003). [CrossRef] [PubMed]
  19. J. R. Jimenez, R. G. Anera, L. J. del Barco, and E. Hita, "Influence of laser polarization on ocular refractive parameters after refractive surgery," Opt. Lett. 29, 962-964 (2004). [CrossRef] [PubMed]
  20. J. R. Jimenez, R. G. Anera, J. A. Diaz, and F. Perez-Ocon, "Corneal asphericity after refractive surgery when the Munnerlyn formula is applied," J. Opt. Soc. Am. A 21, 98-103 (2004). [CrossRef]
  21. J. R. Jimenez, R. G. Anera, L. J. del Barco, E. Hita, and F. Perez-Ocon, "Correction factor for ablation algorithms used in corneal refractive surgery with gaussian-profile beams," Opt. Express 13, 336-343 (2005). [CrossRef] [PubMed]
  22. J. R. Jimenez, F. Rodriguez-Matin, R. G. Anera, and L. J. del Barco, "Deviations of Lambert-Beer's law affect corneal refractive parameters after refractive surgery," Opt. Express 14, 5411-5417 (2006). [CrossRef] [PubMed]
  23. T. P. Hughes, Plasmas and Laser Light (Wiley, 1975).
  24. Y. B. Zel"dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover, 2002).
  25. G. Bekefi, Principles of Laser Plasmas (Wiley, 1976).
  26. J. F. Ready, Effects of High-Power Laser Radiation (Academic, 1971).
  27. I. G. Pallikaris, H. S. Ginis, G. A. Kounis, D. Anglos, T. G. Papazoglou, and L. P. Naoumidis, "Corneal hydration monitored by laser-induced breakdown spectroscopy," J. Refract. Surg. 14, 655-660 (1998). [PubMed]
  28. L.J.Radziemski and D.A.Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, 1989).
  29. V. Hohreiter, J. E. Carranza, and D. W. Hahn, "Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy," Spectrochim. Acta, Part B 59, 327-333 (2004). [CrossRef]
  30. C. G. Parigger, D. H. Plemmons, and E. Oks, "Balmer series Hβ measurements in a laser-induced hydrogen plasma," Appl. Opt. 42, 5992-6000 (2003). [CrossRef] [PubMed]
  31. E. Oks, "A new spectroscopic effect resulting in a narrowing of hydrogen lines in dense plasmas," J. Quant. Spectrosc. Radiat. Transf. 65, 405-414 (2000). [CrossRef]
  32. J. D. Bradshaw, M. O. Rodgers, and D. D. Davis, "Single photon laser-induced fluorescence detection of NO and SO2 for atmospheric conditions of composition and pressure," Appl. Opt. 21, 2493-2500 (1982). [CrossRef] [PubMed]
  33. J. B. Simeonsson and R. C. Sausa, "A critical review of laser photofragmentation-fragment detection techniques for gas phase chemical analysis," Appl. Spectrosc. Rev. 31, 1-72 (1996). [CrossRef]
  34. M. H. Nunez, P. Cavalli, G. Petrucci, and N. Omenetto, "Analysis of sulfuric acid aerosols by laser-induced breakdown spectroscopy and laser-induced photofragmentation," Appl. Spectrosc. 54, 1805-1816 (2000). [CrossRef]
  35. M. H. Nunez and N. Omenetto, "Experimental investigation of sodium emission following laser photofragmentation of different sodium-containing aerosols," Appl. Spectrosc. 55, 809-815 (2001). [CrossRef]
  36. P. N. Prasad, Introduction to Biophotonics (Wiley, 2003). [CrossRef]
  37. M. N. Ediger, G. H. Pettit, R. P. Weiblinger, and C. H. Chen, "Transmission of corneal collagen during ArF excimer laser ablation," Lasers Surg. Med. 13, 204-210 (1993). [CrossRef] [PubMed]
  38. M. N. Ediger, G. H. Pettit, and R. P. Weiblinger, "Noninvasive monitoring of excimer laser ablation by time-resolved reflectometry," Refract. Corneal Surg. 9, 268-275 (1993). [PubMed]
  39. G. H. Pettit and M. N. Ediger, "Pump/probe transmission measurements of corneal tissue during excimer laser ablation," Lasers Surg. Med. 13, 363-367 (1993). [CrossRef] [PubMed]
  40. G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Dynamic optical properties of collagen-based tissue during ArF excimer laser ablation," Appl. Opt. 32, 488-493 (1993). [CrossRef] [PubMed]
  41. M. N. Ediger, G. H. Pettit, and D. W. Hahn, "Enhanced ArF laser absorption in a collagen target under ablative conditions," Lasers Surg. Med. 15, 107-111 (1994). [CrossRef] [PubMed]
  42. G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Excimer laser ablation of the cornea," Opt. Eng. 34, 661-667 (1995). [CrossRef]
  43. P. Simon, "Time-resolved ablation site photography of XeCl-laser irradiated polyimide," Appl. Phys. B 48, 253-256 (1989). [CrossRef]
  44. S. Lerman, Radiant Energy and the Eye (Macmillan, 1980).
  45. S. R. Turns, An Introduction to Combustion: Concepts and Applications (McGraw-Hill, 2000).
  46. P. Anfinrud, R. de Vivie-Riedle, and V. Engel, "Ultrafast detection and control of molecular dynamics," Proc. Natl. Acad. Sci. U.S.A. 96, 8328-8329 (1999). [CrossRef] [PubMed]
  47. B. T. Fisher and D. W. Hahn, "Determination of excimer laser ablation rates of corneal tissue using wax impressions of ablation craters and white-light interferometry," Ophthalmic Surg. Lasers Imaging 35, 41-51 (2004). [PubMed]
  48. D. S. Aron-Rosa, J. L. Boulnoy, F. Carre, J. Delacour, M. Gross, M. LaCour, J. C. Olivo, and J. C. Timsit, "Excimer laser surgery of the cornea: qualitative and quantitative aspects of photoablation according to the energy density," J. Cataract Refractive Surg. 12, 27-33 (1986).
  49. M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews, and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Visual Sci. 40, 826-830 (1999).
  50. M. Campos, X. W. Wang, L. Hertzog, M. Lee, T. Clapham, S. L. Trokel, and P. J. McDonnell, "Ablation rates and surface ultrastructure of 193nm excimer laser keratectomies," Invest. Ophthalmol. Visual Sci. 34, 2493-2500 (1993).
  51. F. E. Fantes and G. O. Waring, "Effect of excimer laser radiant exposure on uniformity of ablated corneal surface," Lasers Surg. Med. 9, 533-542 (1989). [CrossRef] [PubMed]
  52. H. J. Huebscher, U. Genth, and T. Seiler, "Determination of excimer laser ablation rate of the human cornea usingin vivo Scheimpflug videography," Invest. Ophthalmol. Visual Sci. 37, 42-46 (1996).
  53. M. S. Kitai, V. L. Popkov, V. A. Semchishen, and A. A. Kharizov, "The physics of UV laser cornea ablation," IEEE J. Quantum Electron. 27, 302-307 (1991). [CrossRef]
  54. R. R. Krueger and S. L. Trokel, "Quantitation of corneal ablation by ultraviolet laser light," Arch. Ophthalmol. (Chicago) 103, 1741-1742 (1985).
  55. P. P. Van Saarloos and I. J. Constable, "Bovine corneal stroma ablation rate with 193-nm excimer laser radiation: quantitative measurement," Refract. Corneal Surg. 6, 424-429 (1990). [PubMed]
  56. B. T. Fisher, K. A. Masiello, M. H. Goldstein, and D. W. Hahn, "Assessment of transient changes in corneal hydration using confocal Raman spectroscopy," Cornea 22, 363-370 (2003). [CrossRef] [PubMed]
  57. P. J. Dougherty, K. L. Wellish, and R. K. Maloney, "Excimer laser ablation rate and corneal hydration," Am. J. Ophthalmol. 118, 169-176 (1994). [PubMed]
  58. G. O. Waring, "Development of a system for excimer laser corneal surgery," Trans. Am. Ophthalmol. Soc. 87, 854-983 (1989). [PubMed]
  59. M. H. Feltham, M. Optom, and F. Stapleton, "The effect of water content on the 193nm excimer laser ablation," Clin. Exp. Ophthalmol. 30, 99-103 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited