OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media

Quan Liu and Nirmala Ramanujam  »View Author Affiliations


JOSA A, Vol. 24, Issue 4, pp. 1011-1025 (2007)
http://dx.doi.org/10.1364/JOSAA.24.001011


View Full Text Article

Enhanced HTML    Acrobat PDF (419 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A scaling Monte Carlo method has been developed to calculate diffuse reflectance from multilayered media with a wide range of optical properties in the ultraviolet–visible wavelength range. This multilayered scaling method employs the photon trajectory information generated from a single baseline Monte Carlo simulation of a homogeneous medium to scale the exit distance and exit weight of photons for a new set of optical properties in the multilayered medium. The scaling method is particularly suited to simulating diffuse reflectance spectra or creating a Monte Carlo database to extract optical properties of layered media, both of which are demonstrated in this paper. Particularly, it was found that the root-mean-square error (RMSE) between scaled diffuse reflectance, for which the anisotropy factor and refractive index in the baseline simulation were, respectively, 0.9 and 1.338, and independently simulated diffuse reflectance was less than or equal to 5% for source–detector separations from 200 to 1500 μ m when the anisotropy factor of the top layer in a two-layered epithelial tissue model was varied from 0.8 to 0.99; in contrast, the RMSE was always less than 5% for all separations (from 0 to 1500 μ m ) when the anisotropy factor of the bottom layer was varied from 0.7 to 0.99. When the refractive index of either layer in the two-layered tissue model was varied from 1.3 to 1.4, the RMSE was less than 10%. The scaling method can reduce computation time by more than 2 orders of magnitude compared with independent Monte Carlo simulations.

© 2007 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(290.1350) Scattering : Backscattering
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(300.6540) Spectroscopy : Spectroscopy, ultraviolet
(300.6550) Spectroscopy : Spectroscopy, visible

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 13, 2006
Revised Manuscript: November 20, 2006
Manuscript Accepted: November 22, 2006
Published: March 14, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Quan Liu and Nirmala Ramanujam, "Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media," J. Opt. Soc. Am. A 24, 1011-1025 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-24-4-1011


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis," Appl. Opt. 45, 1072-1078 (2006). [CrossRef] [PubMed]
  2. W. Verkruysse, R. Zhang, B. Choi, G. Lucassen, L. O. Svaasand, and J. S. Nelson, "A library based fitting method for visual reflectance spectroscopy of human skin," Phys. Med. Biol. 50, 57-70 (2005). [CrossRef] [PubMed]
  3. S. Merritt, F. Bevilacqua, A. J. Durkin, D. J. Cuccia, R. Lanning, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, "Coregistration of diffuse optical spectroscopy and magnetic resonance imaging in a rat tumor model," Appl. Opt. 42, 2951-2959 (2003). [CrossRef] [PubMed]
  4. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999). [CrossRef] [PubMed]
  5. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo," Appl. Opt. 38, 6628-6637 (1999). [CrossRef]
  6. I. Pavlova, K. Sokolov, R. Drezek, A. Malpica, M. Follen, and R. Richards-Kortum, "Microanatomical and biochemical origins of normal and precancerous cervical autofluorescence using laser-scanning fluorescence confocal microscopy," Photochem. Photobiol. 77, 550-555 (2003). [CrossRef] [PubMed]
  7. T. Collier, D. Arifler, A. Malpica, M. Follen, and R. Richards-Kortum, "Determination of epithelial tissue scattering coefficient using confocal microscopy," IEEE J. Sel. Top. Quantum Electron. 9, 307-313 (2003). [CrossRef]
  8. R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, "Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia," Photochem. Photobiol. 73, 636-641 (2001). [CrossRef] [PubMed]
  9. N. Ramanujam, R. Richards-Kortum, S. Thomsen, A. Mahadevan-Jansen, and M. Follen, "Low temperature fluorescence imaging of freeze-trapped human cervical tissues," Opt. Express 8, 335-343 (2000). [CrossRef]
  10. R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, "Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy," J. Biomed. Opt. 10, 54004 (2005). [CrossRef]
  11. T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992). [CrossRef] [PubMed]
  12. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "In vivo local determination of tissue optical properties: applications to human brain," Appl. Opt. 38, 4939-4950 (1999). [CrossRef]
  13. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt. 35, 2304-2314 (1996). [CrossRef] [PubMed]
  14. A. Kienle and M. S. Patterson, "Determination of the optical properties of turbid media from a single Monte Carlo simulation," Phys. Med. Biol. 41, 2221-2227 (1996). [CrossRef] [PubMed]
  15. C. K. Hayakawa, T. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, "Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues," Opt. Lett. 26, 1335-1337 (2001). [CrossRef]
  16. Q. Liu and N. Ramanujam, "Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra," Appl. Opt. 45, 4776-4790 (2006). [CrossRef] [PubMed]
  17. X-5 Monte Carlo Team, "MCNP Vol. I: Overview and Theory," http://mcnp-green.lanl.gov/manual.html (Diagnostics Applications Group, Los Alamos National Laboratory, 2003), pp. 130-158.
  18. E. Tinet, S. Avrillier, and J. M. Tualle, "Fast semianalytical Monte Carlo simulation for time-resolved light propagation in turbid media," J. Opt. Soc. Am. A 13, 1903-1915 (1996). [CrossRef]
  19. E. Battistelli, P. Bruscaglioni, A. Ismaelli, and G. Zaccanti, "Use of two scaling relations in the study of multiple-scattering effects on the transmittance of light beams through a turbid atmosphere," J. Opt. Soc. Am. A 2, 903-911 (1985). [CrossRef]
  20. R. Graaff, M. Koelink, F. de Mul, W. Zijlstra, and A. C. M. Dassel, "Condensed Monte Carlo simulations for the description of light transport," Appl. Opt. 32, 426-434 (1993). [CrossRef] [PubMed]
  21. G. M. Palmer and N. Ramanujam, "Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms," Appl. Opt. 45, 1062-1071 (2006). [CrossRef] [PubMed]
  22. A. Sassaroli, C. Blumetti, F. Martelli, L. Alianelli, D. Contini, A. Ismaelli, and G. Zaccanti, "Monte Carlo procedure for investigating light propagation and imaging of highly scattering media," Appl. Opt. 37, 7392-7400 (1998). [CrossRef]
  23. J. Swartling, A. Pifferi, A. M. K. Enejder, and S. Andersson-Engels, "Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues," J. Opt. Soc. Am. A 20, 714-727 (2003). [CrossRef]
  24. The Condor Team, "Condor--high throughput computing," http://www.cs.wisc.edu/condor/ (1997-2006).
  25. L. Wang, S. L. Jacques, and L. Zheng, "MCML--Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  26. Q. Liu, C. Zhu, and N. Ramanujam, "Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum," J. Biomed. Opt. 8, 223-236 (2003). [CrossRef] [PubMed]
  27. P. Laven, "Refractive index of water as a function of wavelength," http://www.philiplaven.com/p20.html (2003).
  28. I. H. Malittson, "Refractive index versus wavelength reference table measured at 20°C: synthetic fused silica," http://www.polymicro.com/catalog/alowbar12.htm (1965).
  29. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, "Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications," J. Biomed. Opt. 6, 385-396 (2001). [CrossRef] [PubMed]
  30. F. C. Bohren and R. D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  31. W.-F. Cheong, "Appendix to Chapter 8: summary of optical properties," in Optical-Thermal Response of Laser-Irradiated Tissue, A.J.Welch and M.J. C.van Gemert, eds. (Plenum, 1995), pp. 275-303.
  32. D. R. Wyman, M. S. Patterson, and B. C. Wilson, "Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles," J. Comput. Phys. 81, 137-150 (1989). [CrossRef]
  33. J. J. J. Dirckx, L. C. Kuypers, and W. F. Decraemer, "Refractive index of tissue measured with confocal microscopy," J. Biomed. Opt. 10, 44014 (2005). [CrossRef] [PubMed]
  34. L. Jiancheng, L. Zhenhua, W. Chunyong, and H. Anzhi, "Experimental measurement of the refractive index of biological tissues by total internal reflection," Appl. Opt. 44, 1845-1849 (2005). [CrossRef]
  35. V. Tsenova and E. V. Stoykova, "Refractive index measurement in human tissue samples," in Proc. SPIE 5226, 413-417 (2003). [CrossRef]
  36. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, "Determination of the refractive index of highly scattering human tissue by optical coherence tomography," Opt. Lett. 20, 2258-2260 (1995). [CrossRef] [PubMed]
  37. Q. Liu and N. Ramanujam, "Experimental proof of the feasibility of using an angled fiber-optic probe for depth-sensitive fluorescence spectroscopy of turbid media," Opt. Lett. 29, 2034-2036 (2004). [CrossRef] [PubMed]
  38. F. Bevilacqua and C. Depeursinge, "Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path," J. Opt. Soc. Am. A 16, 2935-2945 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited