OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

Inverse scattering for frequency-scanned full-field optical coherence tomography

Daniel L. Marks, Tyler S. Ralston, Stephen A. Boppart, and P. Scott Carney  »View Author Affiliations


JOSA A, Vol. 24, Issue 4, pp. 1034-1041 (2007)
http://dx.doi.org/10.1364/JOSAA.24.001034


View Full Text Article

Enhanced HTML    Acrobat PDF (444 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Full-field optical coherence tomography (OCT) is able to image an entire en face plane of scatterers simultaneously, but typically the focus is scanned through the volume to acquire three-dimensional structure. By solving the inverse scattering problem for full-field OCT, we show it is possible to computationally reconstruct a three-dimensional volume while the focus is fixed at one plane inside the sample. While a low-numerical-aperture (NA) OCT system can tolerate defocus because the depth of field is large, for high NA it is critical to correct for defocus. By deriving a solution to the inverse scattering problem for full-field OCT, we propose and simulate an algorithm that recovers object structure both inside and outside the depth of field, so that even for high NA the focus can be fixed at a particular plane within the sample without compromising resolution away from the focal plane.

© 2007 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(110.4500) Imaging systems : Optical coherence tomography

ToC Category:
Imaging Systems

History
Original Manuscript: February 27, 2006
Revised Manuscript: October 4, 2006
Manuscript Accepted: October 25, 2006
Published: March 14, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Daniel L. Marks, Tyler S. Ralston, Stephen A. Boppart, and P. Scott Carney, "Inverse scattering for frequency-scanned full-field optical coherence tomography," J. Opt. Soc. Am. A 24, 1034-1041 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-24-4-1034


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4, 861-864 (1998). [CrossRef] [PubMed]
  3. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590-592 (1994). [CrossRef] [PubMed]
  4. J. M. Schmitt, M. J. Yadlowsky, and R. F. Bonner, "Subsurface imaging of living skin with optical coherence microscopy," Dermatology (Basel) 191, 93-98 (1995). [CrossRef]
  5. J. A. Izatt, H.-W. Kulkarni, K. Wang, M. W. Kobayashi, and M. W. Sivak, "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Top. Quantum Electron. 2, 1017-1028 (1996). [CrossRef]
  6. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Inverse scattering problem for optical coherence tomography," J. Opt. Soc. Am. A 23, 1027-1037 (2006). [CrossRef]
  7. E. Beaurepaire and A.-C. Boccara, "Full-field optical coherence microscopy," Opt. Lett. 23, 244-246 (1998). [CrossRef]
  8. A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, "High-resolution full-field optical coherence tomography with a Linnik microscope," Appl. Opt. 41, 805-812 (2002). [CrossRef] [PubMed]
  9. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, "Ultrahigh-resolution full-field optical coherence tomography," Appl. Opt. 43, 2874-2883 (2004). [CrossRef] [PubMed]
  10. A. Dubois, G. Moneron, K. Grieve, and A.-C. Boccara, "Three-dimensional cellular-level imaging using full-field optical coherence tomography," Phys. Med. Biol. 49, 1227-1234 (2004). [CrossRef] [PubMed]
  11. K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J.-F. Le Gargasson, and C. Bocarra, "In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography," Opt. Express 13, 6286-6295 (2005). [CrossRef] [PubMed]
  12. B. Laude, A. De Martino, B. Drevillon, L. Benattar, and L. Schwartz, "Full-field optical coherence tomography with thermal light," Appl. Opt. 41, 6637-6645 (2002). [CrossRef] [PubMed]
  13. G. Moneron, A.-C. Bocarra, and A. Dubois, "Stroboscopic ultrahigh-resolution full-field optical coherence tomography," Opt. Lett. 30, 1351-1353 (2005). [CrossRef] [PubMed]
  14. J. Moreau, V. Lorlette, and A.-C. Bocarra, "Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography. II. Instrument and results," Appl. Opt. 42, 3811-3818 (2003). [CrossRef] [PubMed]
  15. Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, "Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer," Appl. Opt. 44, 1387-1392 (2005). [CrossRef] [PubMed]
  16. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  17. M. Choma, M. Sarunic, Y. Changhuei, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  18. P. Blazkiewicz, M. Gourlay, J. R. Tucker, A. D. Rakic, and A. V. Zvyagin, "Signal-to-noise ratio study of full-field Fourier-domain optical coherence tomography," Appl. Opt. 34, 7722-7729 (2005). [CrossRef]
  19. A. V. Zvyagin, "Fourier-domain optical coherence tomography: optimization of signal-to-noise ratio in full space," Opt. Commun. 242, 97-108 (2004). [CrossRef]
  20. A. V. Zvyagin, P. Blazkiewicz, and J. Vintrou, "Image reconstruction in full-field Fourier-domain optical coherence tomography," J. Opt. A 7, 350-356 (2005). [CrossRef]
  21. B. Povazay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, "Full-field time-encoded frequency-domain optical coherence tomography," Opt. Express 14, 7661-7669 (2006). [CrossRef]
  22. D. N. Sitter, Jr. and W. T. Rhodes, "Three-dimensional imaging: a space invariant model for space variant systems," Appl. Opt. 29, 3789-3794 (1990). [CrossRef]
  23. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  24. P. Hariharan, Optical Interferometry (Academic, 2003).
  25. B. E. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, "High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser," Opt. Lett. 20, 1486-1488 (1995). [CrossRef] [PubMed]
  26. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999). [CrossRef]
  27. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography," Opt. Lett. 27, 2010-2012 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited