OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

Focus-engineered coherent anti-Stokes Raman scattering microscopy: a numerical investigation

Vishnu Vardhan Krishnamachari and Eric Olaf Potma  »View Author Affiliations


JOSA A, Vol. 24, Issue 4, pp. 1138-1147 (2007)
http://dx.doi.org/10.1364/JOSAA.24.001138


View Full Text Article

Enhanced HTML    Acrobat PDF (475 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The coherent anti-Stokes Raman scattering (CARS) signal is calculated as a function of focal-field distributions with engineered phase jumps. We show that the focal fields in CARS microscopy can be shaped such that the signal from the bulk is suppressed in the forward detection mode. We present the field distributions that display enhanced sensitivity to vibrationally resonant object interfaces in the lateral dimension. The use of focus-engineered CARS provides a simple means to detect chemical edges against the strong background signals from the bulk.

© 2007 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(180.5810) Microscopy : Scanning microscopy
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 18, 2006
Revised Manuscript: October 31, 2006
Manuscript Accepted: October 31, 2006
Published: March 14, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Vishnu Vardhan Krishnamachari and Eric Olaf Potma, "Focus-engineered coherent anti-Stokes Raman scattering microscopy: a numerical investigation," J. Opt. Soc. Am. A 24, 1138-1147 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-24-4-1138


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J.-X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004). [CrossRef]
  2. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005). [CrossRef]
  3. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, "Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues," Biophys. J. 89, 581-591 (2005). [CrossRef] [PubMed]
  4. X. Nan, E. O. Potma, and X. S. Xie, "Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy," Biophys. J. 91, 728-725 (2006). [CrossRef] [PubMed]
  5. C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, "Vibrational bands of luminescent zinc(II)-octaethyl-porphyrin using a polarization-sensitive 'microscopic' multiplex CARS technique," J. Raman Spectrosc. 32, 495-501 (2001). [CrossRef]
  6. A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999). [CrossRef]
  7. E. O. Potma and X. S. Xie, "Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy," J. Raman Spectrosc. 34, 642-650 (2003). [CrossRef]
  8. E. O. Potma, W. P. de Boeij, and D. A. Wiersma, "Nonlinear coherent four-wave mixing in optical microscopy," J. Opt. Soc. Am. B 17, 1678-1684 (2000). [CrossRef]
  9. J.-X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002). [CrossRef]
  10. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001). [CrossRef]
  11. A. Volkmer, J.-X. Cheng, and X. S. Xie, "Vibrational imaging with high-sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy," Phys. Rev. Lett. 87, 0239011 (2001). [CrossRef]
  12. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).
  13. S. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated-emission depletion fluorescence microscopy," Opt. Lett. 19, 780-782 (1994). [CrossRef] [PubMed]
  14. T. A. Klar and S. Hell, "Subdiffraction resolution in far-field fluorescence microscopy," Opt. Lett. 24, 954-956 (1999). [CrossRef]
  15. S. W. Hell and E. H. K. Stelzer, "Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation," Opt. Commun. 93, 277-282 (1992). [CrossRef]
  16. A. Egner, S. Jakobs, and S. W. Hell, "Fast 100-nm resolution 3D-microscope reveals structural plasticity of mitochondria in live yeast," Proc. Natl. Acad. Sci. USA 99, 3370-3375 (2002). [CrossRef] [PubMed]
  17. M. Dyba and S. W. Hell, "Focal spots of size ?/23 open up far-field fluorescence microscopy at 33 nm axial resolution," Phys. Rev. Lett. 88, 163901 (2002). [CrossRef] [PubMed]
  18. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, "Spiral phase contrast imaging in microscopy," Opt. Express 13, 689-694 (2005). [CrossRef] [PubMed]
  19. W. P. de Boeij, J. S. Kanger, G. W. Lucassen, C. Otto, and J. Greve, "Waveguide CARS spectroscopy: a new method for background suppression, using dielectric layers as a model," Appl. Spectrosc. 47, 723-730 (1993). [CrossRef]
  20. J. N. Gannaway and C. J. R. Sheppard, "Second-harmonic imaging in the scanning optical microscope," Opt. Quantum Electron. 10, 435-439 (1978). [CrossRef]
  21. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, "Second-harmonic tomography of tissues," Opt. Lett. 22, 1323-1325 (1997). [CrossRef]
  22. P. J. Campagnola, M. Wei, A. Lewis, and L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341-3349 (1999). [CrossRef] [PubMed]
  23. L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, "Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy," Opt. Lett. 25, 320-322 (2000). [CrossRef]
  24. M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D-microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266-274 (1998). [CrossRef] [PubMed]
  25. J. A. Squier, M. Müller, G. J. Brakenhoff, and K. R. Wilson, "Third harmonic generation microscopy," Opt. Express 3, 315-324 (1998). [CrossRef] [PubMed]
  26. D. Yelin and Y. Silberberg, "Laser scanning third-harmonic-generation microscopy in biology," Opt. Express 5, 169-175 (1999). [CrossRef] [PubMed]
  27. D. Débarre, W. Supatto, E. Farge, B. Moulia, M.-C. Schanne-Klein, and E. Beaurepaire, "Velocimetric third-harmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos," Opt. Lett. 29, 2881-2883 (2004). [CrossRef]
  28. L. Novotny, E. J. Sánchez, and X. S. Xie, "Near-field optical imaging using metal tips illuminated by higher-order Hermite-Gaussian beams," Ultramicroscopy 71, 21-29 (1998). [CrossRef]
  29. V. Delaubert, D. A. Shaddock, P. K. Lam, B. C. Buchler, H.-A. Bachor, and D. E. McClelland, "Generation of a phase-flipped Gaussian mode for optical measurements," J. Opt. A 4, 393-399 (2002). [CrossRef]
  30. E. Engel, N. Huse, T. A. Klar, and S. W. Hell, "Creating ?/3 focal holes with a Mach-Zehnder interferometer," Appl. Phys. B 77, 11-17 (2003). [CrossRef]
  31. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems II: Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959). [CrossRef]
  32. R. Piessens, E. de Doncker-Kapenga, C. W. Uberhuber, and D. K. Kahaner, QUADPACK: A Subroutine Package for Automatic Integration (Springer-Verlag, 1983).
  33. T. Wilson and J. B. Tan, "Finite sized coherent and incoherent detectors in confocal microscopy," J. Microsc. 182, 61-66 (1995). [CrossRef]
  34. P. Higdon, R. Juskaitis, and T. Wilson, "The effect of detector size on the extinction coefficient in confocal polarization microscopes," J. Microsc. 187, 8-11 (1997). [CrossRef]
  35. L. Moreaux, O. Sandre, S. Charpak, M. Blanchard-Desce, and J. Mertz, "Coherent scattering in multi-harmonic light microscopy," Biophys. J. 80, 1568-1574 (2001). [CrossRef] [PubMed]
  36. E. Y. S. Yew and C. J. R. Sheppard, "Effects of axial field components on second harmonic generation microscopy," Opt. Express 14, 1167-1174 (2006). [CrossRef] [PubMed]
  37. J.-X. Cheng and X. S. Xie, "Green's function formulation for third-harmonic generation microscopy," J. Opt. Soc. Am. B 19, 1604-1610 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited