OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 6 — Jun. 13, 2007

Improved scanning laser fundus imaging using polarimetry

Juan M. Bueno, Jennifer J. Hunter, Christopher J. Cookson, Marsha L. Kisilak, and Melanie C. W. Campbell  »View Author Affiliations

JOSA A, Vol. 24, Issue 5, pp. 1337-1348 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1025 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a polarimetric technique to improve fundus images that notably simplifies and extends a previous procedure [Opt. Lett. 27, 830 (2002)] . A generator of varying polarization states was incorporated into the illumination path of a confocal scanning laser ophthalmoscope. A series of four images, corresponding to independent incoming polarization states, were recorded. From these images, the spatially resolved elements of the top row of the Mueller matrix were computed. From these elements, images with the highest and lowest quality (according to different image quality metrics) were constructed, some of which provided improved visualization of fundus structures of clinical importance (vessels and optic nerve head). The metric values were better for these constructed images than for the initially recorded images and better than averaged images. Entropy is the metric that is most sensitive to differences in the image quality. Improved visualization of features could aid in the detection, localization, and tracking of ocular disease and may be applicable in other biomedical imaging.

© 2007 Optical Society of America

OCIS Codes
(110.3000) Imaging systems : Image quality assessment
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.1790) Microscopy : Confocal microscopy
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Instrumentation and Techniques for Retinal Imaging

Original Manuscript: August 30, 2006
Revised Manuscript: November 24, 2006
Manuscript Accepted: December 15, 2006
Published: April 11, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

Juan M. Bueno, Jennifer J. Hunter, Christopher J. Cookson, Marsha L. Kisilak, and Melanie C. W. Campbell, "Improved scanning laser fundus imaging using polarimetry," J. Opt. Soc. Am. A 24, 1337-1348 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Roorda, F. Romero-Borja, W. J. Donnelly III, H. Quenner, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002). [PubMed]
  2. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, "Adaptative optics scanning laser ophthalmoscope for stabilized retinal imaging," Opt. Express 14, 3354-3367 (2006). [CrossRef] [PubMed]
  3. B. Vohnsen, I. Iglesias, and P. Artal, "High-resolution imaging of the in-vivo human eye retina," DOPS-nyt (J. Danish Opt. Soc.) 2, 16-19 (2004). [CrossRef]
  4. C. Beckman, L. Bond-Taylor, B. Lindblom, and J. Sjostrand, "Confocal fundus imaging with a scanning laser ophthalmoscope in eyes with cataract," Br. J. Ophthamol. 79, 900-904 (1995). [CrossRef]
  5. L. Zangwill, I. Irak, C. Berry, and V. Garden, "Effect of cararact and pupil size on image quality with confocal scanning laser ophthalmoscopy," Arch. Ophthalmol. (Chicago) 115, 983-990 (1997).
  6. A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, "Infrared imaging of subretinal structures in the human ocular fundus," Vision Res. 36, 191-205 (1996). [CrossRef] [PubMed]
  7. R. H. Webb, G. W. Hughes, and F. C. Delori, "Confocal scanning laser ophthalmoscope," Appl. Opt. 26, 1492-1499 (1987). [CrossRef] [PubMed]
  8. C. Beckman, M. Atkinson, M. Stargard, R. Munger, and M. Campbell, "The influence of increased interocular light scatter on the contrast in a confocal scanning laser ophthalmoscope image," in Vision Science and Its Application, Vol. 1 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), pp. 106-109.
  9. M. A. Burke, C. J. Khanna, A. Miller, S. T. Venkataraman, and C. Hudson, "The impact of artificial light scatter on scanning laser tomography," Optom. Vision Sci. 83, 222-227 (2006). [CrossRef]
  10. B. Piercionek, R. J. Green, and S. G. Dolgobrodov, "Retinal images seen through a cataractous lens modeled as a phase-aberrating screen," J. Opt. Soc. Am. A 19, 1491-1500 (2002). [CrossRef]
  11. J. J. Hunter, C. J. Cookson, M. L. Kisilak, J. M. Bueno, and M C. W. Campbell, "Characterizing image quality in a scanning laser ophthalmoscope with differing pinholes and induced scattered light," J. Opt. Soc. Am. A 24, 1284-1295 (2007). [CrossRef]
  12. A. R. Wade and F. W. Fitzke, "A fast, robust recognition system for low light level image registration and its application to retinal image," Opt. Express 3, 190-197 (1998). [CrossRef] [PubMed]
  13. K. Goatman, A. Manivannan, J. H. Hipwell, P. F. Sharp, N. Lois, and J. V. Forrester, "Automatic registration and averaging of ophthalmic autofluorescence images," in Conference Proceedings of the Medical Image Understanding and Analysis 2001 (University of Birmingham, 2001), http://events.cs.bham.ac.uk/miua2001/posters/goatman.pdf.
  14. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high resolution retinal imaging through adaptative optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  15. H. Hofer, L. Chen, G. Y. Yoon, Y. Yamauchi, and D. R. Williams, "Improvement in retinal image quality with dynamic correction of the eye's aberrations," Opt. Express 8, 631-643 (2001). [CrossRef] [PubMed]
  16. B. Vohnsen, I. Iglesias, and P. Artal, "Confocal scanning laser ophthalmoscope with adaptive optical wavefront correction," Proc. SPIE 4964, 24-32 (2003). [CrossRef]
  17. Y. Zhang, S. Poonja, and A. Roorda, "MEMS-based adaptive optics scanning laser ophthalmoscopy," Opt. Lett. 31, 1268-1270 (2006). [CrossRef] [PubMed]
  18. S. A. Burns, S. Marcos, A. E. Elsner, and S. Bará, "Contrast improvement of confocal retinal imaging by use of phase-correcting plates," Opt. Lett. 27, 400-402 (2002). [CrossRef]
  19. I. Iglesias and P. Artal, "High-resolution retinal images obtained by deconvolution from wave-front sensing," Opt. Lett. 25, 1804-1806 (2000). [CrossRef]
  20. D. Catlin and C. Dainty, "High-resolution imaging of the human retina with a Fourier deconvolution technique," J. Opt. Soc. Am. A 19, 1515-1523 (2002). [CrossRef]
  21. A. W. Dreher, K. Reiter, and R. N. Weinreb, "Spatially resolved birefringence of the retinal never fiber layer assessed with a retinal laser ellipsometer," Appl. Opt. 31, 3730-3735 (1992). [CrossRef] [PubMed]
  22. Q. Zhou and R. N. Weinreb, "Individualized compensation of anterior segment birefringence during scanning laser polarimetry," Invest. Ophthalmol. Visual Sci. 43, 2221-2228 (2002).
  23. E. Peli, "Circular polarizers enhance visibility of endothelium in specular reflection biomicroscopy," Arch. Ophthalmol. (Chicago) 103, 670-672 (1985).
  24. R. A. Weale, "New method for visualising discontinuities in the crystalline lens," Br. J. Ophthamol. 70, 925-930 (1986). [CrossRef]
  25. A. Sommer, H. A. Kues, S. A. D'Anna, S. Arkell, S. Robin, and H. A. Quigley, "Cross-polarization photography of the nerve fiber layer," Arch. Ophthalmol. (Chicago) 102, 864-869 (1984).
  26. J. M. Bueno and P. Artal, "Polarization and retinal image quality estimates in the human eye," J. Opt. Soc. Am. A 18, 489-496 (2001). [CrossRef]
  27. A. Weber, M. C. Cheney, Q. Y. J. Smithwick, and A. E. Elsner, "Polarimetric imaging and blood vessel quantification," Opt. Express 12, 5178-5190 (2004). [CrossRef] [PubMed]
  28. S. A. Burns, A. E. Elsner, M. B. Mellem-Kairala, and R. B. Simmons, "Improved contrast of subretinal structures using polarization analysis," Invest. Ophthalmol. Visual Sci. 44, 4061-4068 (2003). [CrossRef]
  29. R. N. Weinreb, S. Shakiba, and L. Zangwill, "Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes," Am. J. Ophthalmol. 119, 627-636 (1995). [PubMed]
  30. M. B. Mellem-Kairala, A. E. Elsner, A. Weber, R. B. Simmons, and S. A. Burns, "Improved contrast of peripapillary hyperpigmentation using polarization analysis," Invest. Ophthalmol. Visual Sci. 46, 1099-1106 (2005). [CrossRef]
  31. M. Miura, A. E. Elsner, A. Weber, M. C. Cheney, M. Oshako, M. Usui, and T. Iwasaki, "Imaging polarimetry in central serous chorioretinopathy," Am. J. Ophthalmol. 140, 1014-1019 (2005). [CrossRef] [PubMed]
  32. G. J. van Blokland, "Ellipsometry of the human retinain vivo: preservation of polarization," J. Opt. Soc. Am. A 2, 72-75 (1985). [CrossRef] [PubMed]
  33. B. C. E. Pelz, C. Weschenmoser, S. Goelz, J. P. Fischer, R. O. W. Burk, and J. F. Bille, "In vivo measurement of the retinal birefringence with regard to corneal effects using an electro-optical ellipsometer," Proc. SPIE 2930, 92-101 (1996). [CrossRef]
  34. J. M. Bueno, "Depolarization effects in the human eye," Vision Res. 41, 2687-2696 (2001). [CrossRef] [PubMed]
  35. J. M. Bueno and M. C. W. Campbell, "Polarization properties for in vitro old human crystalline lens," Ophthalmic Physiol. Opt. 23, 109-118 (2003). [CrossRef] [PubMed]
  36. J. M. Bueno and M. C. W. Campbell, "Confocal scanning laser ophthalmoscopy improvement by use of Mueller-matrix polarimetry," Opt. Lett. 27, 830-832 (2002). [CrossRef]
  37. J. M. Bueno, "Polarimetry in the human eye using an imaging linear polariscope," J. Opt. A, Pure Appl. Opt. 4, 553-561 (2002). [CrossRef]
  38. J. M. Bueno, "The influence of depolarization and corneal birefringence on ocular polarization," J. Opt. A, Pure Appl. Opt. 6, S91-S99 (2004). [CrossRef]
  39. J. M. Bueno and B. Vohnsen, "Polarimetric high-resolution confocal scanning laser ophthalmoscope," Vision Res. 45, 3526-3534 (2005). [CrossRef] [PubMed]
  40. J. W. Goodman, "Statistical properties of laser speckle patterns," in Topics in Applied Physics: Laser Speckle and Related Phenomena, 2nd ed., J.C.Dainty, ed. (Springer-Verlag, 1984), Vol. 9, pp. 9-75. [CrossRef]
  41. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Pearson Prentice Hall, 2004), p. 609.
  42. Y. F. Choong, F. Rakebrandt, R. V. North, and J. E. Morgan, "Acutance, an objective measure of retinal nerve fibre image clarity," Br. J. Ophthamol. 87, 322-326 (2003). [CrossRef]
  43. R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, "Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve-fiber layer thickness," Arch. Ophthalmol. (Chicago) 108, 557-560 (1990).
  44. D. F. Garway-Heath, G. Wollstein, and R. A. Hitchings, "Aging changes of the optic nerve head in relation to open angle glaucoma," Br. J. Ophthamol. 81, 840-845 (1997). [CrossRef]
  45. M. J. Greaney, D. C. Hoffman, D. F. Garway-Heath, M. Nakla, A. L. Coleman, and J. Caprioli, "Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma," Invest. Ophthalmol. Visual Sci. 43, 140-145 (2002).
  46. C. Bowd, L. M. Zangwill, F. A. Medeiros, I. M. Tavares, E. M. Hoffmann, R. R. Bourne, P. A. Sample, and R. N. Weinreb, "Structure-function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry," Invest. Ophthalmol. Visual Sci. 47, 2889-2895 (2006). [CrossRef]
  47. J. M. Bueno, E. Berrio, and P. Artal, "Aberro-polariscope for the human eye," Opt. Lett. 28, 1209-1211 (2003). [CrossRef] [PubMed]
  48. R. M. Rangayyan, N. M. El-Faramawy, J. E. Desautels, and O. A. Alim, "Measures of acutance and shape for classification of breast tumors," IEEE Trans. Med. Imaging 16, 799-810 (1997). [CrossRef]
  49. N. Hutchings, C. J. Cookson, J. J. Hunter, M. L. Kisilak, Q. Liang, J. M. Bueno, and M. C. W. Campbell, "Subjective evaluation of polarization images of the optic nerve head and retinal structures," 2006 Annual Meeting Abstract and Program Planner, www.arvo.org, abstract 4060.
  50. A. Bhandari, L. Fontana, F. W. Fitzke, and R. A. Hitchings, "Quantitative analysis of the lamina cribrosa in vivo using a scanning laser ophthalmoscope," Curr. Eye Res. 16, 1-8 (1997). [CrossRef] [PubMed]
  51. M. C. W. Campbell, J. M. Bueno, C. J. Cookson, Q. Liang, M. L. Kisilak, and J. J. Hunter, "Enhanced confocal microscopy and ophthalmoscopy with polarization imaging," Proc. SPIE 5969, 611-616 (2005).
  52. R. Chrastek, M. Wolf, K. Donath, H. Niemann, D. Paulus, T. Hothorn, B. Lausen, R. Lammer, C. Y. Mardin, and G. Michelson, "Automated segmentation of the optic nerve head for diagnosis of glaucoma," Med. Image Anal. 9, 297-314 (2005). [CrossRef] [PubMed]
  53. M. C. W. Campbell, J. J. Hunter, C. J. Cookson, J. M. Bueno, and M. L. Kisilak, "Spatially resolved Mueller matrix analysis of properties of the optic nerve head," 2005 Annual Meeting Abstract and Program Planner, www.arvo.org, abstract 2556.
  54. J. M. Bueno, C. J. Cookson, M. L. Kisilak, J. J. Hunter, and M. C. W. Campbell, "Degree of polarization of light reflected from optic nerve head," 2006 Annual Meeting Abstract and Program Planner, www.arvo.org, abstract 4059.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited