OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 6 — Jun. 13, 2007

3D phase diversity: a myopic deconvolution method for short-exposure images: application to retinal imaging

Guillaume Chenegros, Laurent M. Mugnier, François Lacombe, and Marie Glanc  »View Author Affiliations


JOSA A, Vol. 24, Issue 5, pp. 1349-1357 (2007)
http://dx.doi.org/10.1364/JOSAA.24.001349


View Full Text Article

Enhanced HTML    Acrobat PDF (1086 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

3D deconvolution is an established technique in microscopy that may be useful for low-cost high-resolution imaging of the retina. We report on a myopic 3D deconvolution method developed in a Bayesian framework. This method uses a 3D imaging model, a noise model that accounts for both photon and detector noises, a regularization term that is appropriate for objects that are a mix of sharp edges and smooth areas, a positivity constraint, and a smart parameterization of the point-spread function (PSF) by the pupil phase. It estimates the object and the PSF jointly. The PSF parameterization through the pupil phase constrains the inversion by dramatically reducing the number of unknowns. The joint deconvolution is further constrained by an additional longitudinal support constraint derived from a 3D interpretation of the phase-diversity technique. This method is validated by simulated retinal images.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(100.1830) Image processing : Deconvolution
(100.3020) Image processing : Image reconstruction-restoration
(100.5070) Image processing : Phase retrieval
(100.6890) Image processing : Three-dimensional image processing
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy

ToC Category:
Image Processing

History
Original Manuscript: July 31, 2006
Revised Manuscript: October 2, 2006
Manuscript Accepted: October 3, 2006
Published: April 11, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Guillaume Chenegros, Laurent M. Mugnier, François Lacombe, and Marie Glanc, "3D phase diversity: a myopic deconvolution method for short-exposure images: application to retinal imaging," J. Opt. Soc. Am. A 24, 1349-1357 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-24-5-1349


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Primot, G. Rousset, and J.-C. Fontanella, "Deconvolution from wave-front sensing: a new technique for compensating turbulence-degraded images," J. Opt. Soc. Am. A 7, 1598-1608 (1990). [CrossRef]
  2. L. M. Mugnier, C. Robert, J.-M. Conan, V. Michau, and S. Salem, "Myopic deconvolution from wave-front sensing," J. Opt. Soc. Am. A 18, 862-872 (2001). [CrossRef]
  3. D. Catlin and C. Dainty, "High-resolution imaging of the human retina with a Fourier deconvolution technique," J. Opt. Soc. Am. A 19, 1515-1523 (2002). [CrossRef]
  4. G. Rousset, J.-C. Fontanella, P. Kern, P. Gigan, F. Rigaut, P. Léna, C. Boyer, P. Jagourel, J.-P. Gaffard, and F. Merkle, "First diffraction-limited astronomical images with adaptive optics," Astron. Astrophys. 230, 29-32 (1990).
  5. M. C. Roggemann, "Limited degree-of-freedom adaptive optics and image reconstruction," Appl. Opt. 30, 4227-4233 (1991). [CrossRef] [PubMed]
  6. J. M. Conan, P. Y. Madec, and G. Rousset, "Image formation in adaptive optics partial correction," in Active and Adaptive Optics, F.Merkle, ed., Vol. 48 of ESO Conference and Workshop Proceeding (European Southern Observatory/International Commission of Optics, 1994).
  7. J.-M. Conan, "Étude de la correction partielle en optique adaptative," Ph.D. thesis (Université Paris XI, 1994).
  8. J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, "Three-dimensional imaging by deconvolution microscopy," Methods 19, 373-385 (1999). [CrossRef] [PubMed]
  9. J. C. Christou, A. Roorda, and D. R. Williams, "Deconvolution of adaptive optics retinal images," J. Opt. Soc. Am. A 21, 1393-1401 (2004). [CrossRef]
  10. A. Tikhonov and V. Arsenin, Solutions of Ill-Posed Problems (Winston, 1977).
  11. G. Demoment, "Image reconstruction and restoration: overview of common estimation structures and problems," IEEE Trans. Acoust., Speech, Signal Process. 37, 2024-2036 (1989). [CrossRef]
  12. J.Idier, ed., Approche Bayésienne pour les Problèmes Inverses (Hermès, 2001).
  13. L. M. Mugnier, T. Fusco, and J.-M. Conan, "MISTRAL: a myopic edge-preserving image restoration method, with application to astronomical adaptive optics-corrected long-exposure images," J. Opt. Soc. Am. A 21, 1841-1854 (2004). [CrossRef]
  14. J.-M. Conan, L. M. Mugnier, T. Fusco, V. Michau, and G. Rousset, "Myopic deconvolution of adaptive optics images by use of object and point-spread function power spectra," Appl. Opt. 37, 4614-4622 (1998). [CrossRef]
  15. D. Gratadour, D. Rouan, L. M. Mugnier, T. Fusco, Y. Clénet, E. Gendron, and F. Lacombe, "Near-infrared adaptive optics dissection of the core of NGC 1068 with NaCo," Astron. Astrophys. 446, 813-825 (2006). [CrossRef]
  16. A. Blanc, L. M. Mugnier, and J. Idier, "Marginal estimation of aberrations and image restoration by use of phase diversity," J. Opt. Soc. Am. A 20, 1035-1045 (2003). [CrossRef]
  17. P. J. Green, "Bayesian reconstructions from emission tomography data using a modified EM algorithm," IEEE Trans. Med. Imaging 9, 84-93 (1990). [CrossRef]
  18. C. Bouman and K. Sauer, "A generalized Gaussian image model for edge-preserving MAP estimation," IEEE Trans. Image Process. 2, 296-310 (1993). [CrossRef]
  19. J. Idier and L. Blanc-Féraud, "Deconvolution en imagerie," in Approche Bayésienne pour les Problèmes Inverses, J.Idier, ed. (Hermès, 2001), Chap. 6.
  20. W. J. J. Rey, Introduction to Robust and Quasi-Robust Statistical Methods (Springer-Verlag, 1983). [CrossRef]
  21. S. Brette and J. Idier, "Optimized single site update algorithms for image deblurring," in Proceedings of the International Conference on Image Processing (IEEE Computer Society, 1996), pp. 65-68.
  22. T. J. Schulz, "Multiframe blind deconvolution of astronomical images," J. Opt. Soc. Am. A 10, 1064-1073 (1993). [CrossRef]
  23. E. Thiébaut and J.-M. Conan, "Strict a priori constraints for maximum-likelihood blind deconvolution," J. Opt. Soc. Am. A 12, 485-492 (1995). [CrossRef]
  24. R. J. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. A 66, 207-211 (1976). [CrossRef]
  25. E. Thiébaut, "Optimization issues in blind deconvolution algorithms," in Astronomical Data Analysis. II, J.-L. Starck and F. D. Murtagh, eds., Proc. SPIE 4847, 174-183 (2002). [CrossRef]
  26. G. Chenegros, L. M. Mugnier, and F. Lacombe, "3D deconvolution of adaptive-optics corrected retinal images," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIII, J.-A. Conchello, C. J. Cogswell, and T. Wilson, eds., Proc. SPIE 6090, 60900P (2006). [CrossRef]
  27. R. A. Gonsalves, "Phase retrieval and diversity in adaptive optics," Opt. Eng. 21, 829-832 (1982).
  28. L. M. Mugnier, A. Blanc, and J. Idier, "Phase diversity: a technique for wave-front sensing and for diffraction-limited imaging," in Advances in Imaging and Electron Physics, P.Hawkes, ed. (Elsevier, 2006), Vol. 141, Chap. 1. [CrossRef]
  29. M. F. Reiley, R. G. Paxman, J. R. Fienup, K. W. Gleichman, and J. C. Marron, "3D reconstruction of opaque objects from Fourier intensity data," in Image Reconstruction and Restoration II, T. J. Schulz, ed., Proc. SPIE 3170, 76-87 (1997). [CrossRef]
  30. R. G. Paxman, J. H. Seldin, J. R. Fienup, and J. C. Marron, "Use of an opacity constraint in three-dimensional imaging," in Inverse Optics III, M. A. Fiddy, ed., Proc. SPIE 2241, 116-126 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited