OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 6 — Jun. 13, 2007

Adaptive optics–optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions

Robert J. Zawadzki, Stacey S. Choi, Steven M. Jones, Scot S. Oliver, and John S. Werner  »View Author Affiliations


JOSA A, Vol. 24, Issue 5, pp. 1373-1383 (2007)
http://dx.doi.org/10.1364/JOSAA.24.001373


View Full Text Article

Enhanced HTML    Acrobat PDF (1855 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Adaptive optics–optical coherence tomography (AO-OCT) permits improved imaging of microscopic retinal structures by combining the high lateral resolution of AO with the high axial resolution of OCT, resulting in the narrowest three-dimensional (3D) point-spread function (PSF) of all in vivo retinal imaging techniques. Owing to the high volumetric resolution of AO-OCT systems, it is now possible, for the first time, to acquire images of 3D cellular structures in the living retina. Thus, with AO-OCT, those retinal structures that are not visible with AO or OCT alone (e.g., bundles of retinal nerve fiber layers, 3D mosaic of photoreceptors, 3D structure of microvasculature, and detailed structure of retinal disruptions) can be visualized. Our current AO-OCT instrumentation uses spectrometer-based Fourier-domain OCT technology and two-deformable-mirror-based AO wavefront correction. We describe image processing methods that help to remove motion artifacts observed in volumetric data, followed by innovative data visualization techniques [including two-dimensional (2D) and 3D representations]. Finally, examples of microscopic retinal structures that are acquired with the University of California Davis AO-OCT system are presented.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(110.4500) Imaging systems : Optical coherence tomography
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.0110) Medical optics and biotechnology : Imaging systems
(170.4470) Medical optics and biotechnology : Ophthalmology
(220.1000) Optical design and fabrication : Aberration compensation

ToC Category:
Image Processing

History
Original Manuscript: August 15, 2006
Revised Manuscript: November 13, 2006
Manuscript Accepted: December 18, 2006
Published: April 11, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Robert J. Zawadzki, Stacey S. Choi, Steven M. Jones, Scot S. Oliver, and John S. Werner, "Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24, 1373-1383 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-24-5-1373


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and Y. Elzaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  2. G. Häusler and M. W. Lindner, "Coherence radar and spectral radar--new tools for dermatological diagnosis," J. Biomed. Opt. 7, 21-31 (1998). [CrossRef]
  3. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  4. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Real time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745-1747 (2003). [CrossRef] [PubMed]
  5. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). [CrossRef] [PubMed]
  6. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-46 (2005). [CrossRef] [PubMed]
  7. U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Visual Sci. 46, 3393-3402 (2005). [CrossRef]
  8. S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial Fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-31 (2006). [CrossRef] [PubMed]
  9. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  10. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  11. M. A. Choma, M. V. Sarunic, Ch. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  12. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). [CrossRef] [PubMed]
  13. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004). [CrossRef] [PubMed]
  14. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). [CrossRef] [PubMed]
  15. D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn, "Coherence gating and adaptive optics in the eye," Proc. SPIE 4956, 65-72 (2003). [CrossRef]
  16. B. Hermann, E. J. Fernandez, A. Unterhubner, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Altai, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004). [CrossRef] [PubMed]
  17. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005). [CrossRef] [PubMed]
  18. E. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattman, P. Prieto, R. Leitgeb, P. Anhelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005). [CrossRef] [PubMed]
  19. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005). [CrossRef] [PubMed]
  20. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006). [CrossRef] [PubMed]
  21. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006). [CrossRef] [PubMed]
  22. E. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005). [CrossRef] [PubMed]
  23. E. J. Fernández, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006). [CrossRef] [PubMed]
  24. S. P. Laut, S. M. Jones, S. S. Olivier, and J. S. Werner, "Scanning laser ophthalmoscope design with adaptive optics," Proc. SPIE 6007, 60070I (2005). [CrossRef]
  25. P. Thévenaz, U. E. Ruttimann, and M. Unser, "A pyramid approach to subpixel registration based on intensity," IEEE Trans. Image Process. 7, 27-41 (1998). [CrossRef]
  26. R. J. Zawadzki, A. R. Fuller, M. Zhao, D. F. Wiley, S. S. Choi, B. A. Bower, B. Hamann, J. A. Izatt, and J. S. Werner, "3D OCT imaging in clinical settings: toward quantitative measurements of retinal structures," Proc. SPIE 6138, 1-11 (2006).
  27. R. Klein, B. E. Klein, S. C. Tomany, S. M. Meuer, and G. H. Huang, "Ten-year incidence and progression of age-related maculopathy: the Beaver Dam eye study," Ophthalmology 109, 1767-79 (2002). [CrossRef] [PubMed]
  28. S. H. Sarks and J. P. Sarks, "Age-related maculopathy: nonneovascular age-related macular degeneration and the evolution of geographic atrophy," in Retina, A.P.Schachat, ed. (Mosby, 2001), Vol. 2, pp. 1064-1099.
  29. P. T. Johnson, G. P. Lewis, K. C. Talaga, M. N. Brown, P. J. Kappel, S. K. Fisher, D. H. Anderson, and L. V. Johnson, "Drusen-associated degeneration in the retina," Invest. Ophthalmol. Visual Sci. 44, 4481-4488 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited