OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 6 — Jun. 13, 2007

Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency

Rigmor C. Baraas, Joseph Carroll, Karen L. Gunther, Mina Chung, David R. Williams, David H. Foster, and Maureen Neitz  »View Author Affiliations


JOSA A, Vol. 24, Issue 5, pp. 1438-1447 (2007)
http://dx.doi.org/10.1364/JOSAA.24.001438


View Full Text Article

Enhanced HTML    Acrobat PDF (1095 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tritan color-vision deficiency is an autosomal dominant disorder associated with mutations in the short-wavelength-sensitive- (S-) cone-pigment gene. An unexplained feature of the disorder is that individuals with the same mutation manifest different degrees of deficiency. To date, it has not been possible to examine whether any loss of S-cone function is accompanied by physical disruption in the cone mosaic. Two related tritan subjects with the same novel mutation in their S-cone-opsin gene, but different degrees of deficiency, were examined. Adaptive optics was used to obtain high-resolution retinal images, which revealed distinctly different S-cone mosaics consistent with their discrepant phenotypes. In addition, a significant disruption in the regularity of the overall cone mosaic was observed in the subject completely lacking S-cone function. These results taken together with other recent findings from molecular genetics indicate that, with rare exceptions, tritan deficiency is progressive in nature.

© 2007 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(330.1720) Vision, color, and visual optics : Color vision
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.5310) Vision, color, and visual optics : Vision - photoreceptors

ToC Category:
Clinical Applications of Retinal Imaging

History
Original Manuscript: September 1, 2006
Revised Manuscript: December 6, 2006
Manuscript Accepted: December 7, 2006
Published: April 11, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Rigmor C. Baraas, Joseph Carroll, Karen L. Gunther, Mina Chung, David R. Williams, David H. Foster, and Maureen Neitz, "Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency," J. Opt. Soc. Am. A 24, 1438-1447 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-24-5-1438


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. D. Wright, "The characteristics of tritanopia," J. Opt. Soc. Am. 42, 509-521 (1952). [CrossRef] [PubMed]
  2. T. Piantanida, "Genetics of inherited colour vision deficiencies," in Inherited and Acquired Colour Vision Deficiencies: Fundamental Aspects and Clinical Studies, D.H.Foster, ed. (Macmillan, 1991), pp. 88-114.
  3. B. L. Cole, G. H. Henry, and J. Nathan, "Phenotypical variations of tritanopia," Vision Res. 6, 301-313 (1966). [CrossRef]
  4. H. Kalmus, "The familial distribution of congenital tritanopia, with some remarks on some similar conditions," Ann. Hum. Genet. 20, 39-56 (1955). [CrossRef] [PubMed]
  5. Y. Miyake, K. Yagasaki, and H. Ichikawa, "Differential diagnosis of congenital tritanopia and dominantly inherited juvenile optic atrophy," Arch. Ophthalmol. (Chicago) 103, 1496-1501 (1985).
  6. T. Neuhann, H. Kalmus, and W. Jaeger, "Ophthalmological findings in the tritans, described by Wright and Kalmus," Mod. Probl. Ophthalmol. 17, 135-142 (1976). [PubMed]
  7. J. Pokorny, V. C. Smith, and L. N. Went, "Color matching in autosomal dominant tritan defect," J. Opt. Soc. Am. 71, 1327-1334 (1981). [PubMed]
  8. L. N. Went and N. Pronk, "The genetics of tritan disturbances," Hum. Genet. 69, 255-262 (1985). [CrossRef] [PubMed]
  9. K. L. Gunther, J. Neitz, and M. Neitz, "A novel mutation in the short-wavelength-sensitive cone pigment gene associated with a tritan color vision defect," Visual Neurosci. 23, 403-409 (2006). [CrossRef]
  10. C. J. Weitz, Y. Miyake, K. Shinzato, E. Montag, E. Zrenner, L. N. Went, and J. Nathans, "Human tritanopia associated with two amino acid substitutions in the blue-sensitive opsin," Am. J. Hum. Genet. 50, 498-507 (1992). [PubMed]
  11. C. J. Weitz, L. N. Went, and J. Nathans, "Human tritanopia associated with a third amino acid substitution in the blue-sensitive visual pigment," Am. J. Hum. Genet. 51, 444-446 (1992). [PubMed]
  12. J. Hwa, P. Garriga, X. Liu, and H. G. Khorana, "Structure and function in rhodopsin: packing of the helices in the transmembrane domain and folding to a tertiary structure in the intradiscal domain are coupled," Proc. Natl. Acad. Sci. U.S.A. 94, 10571-10576 (1997). [CrossRef] [PubMed]
  13. V. C. Sheffield, G. A. Fishman, J. S. Beck, A. E. Kimura, and E. M. Stone, "Identification of novel rhodopsin mutations associated with retinitis pigmentosa by GC-clamped denaturing gradient gel electrophoresis," Am. J. Hum. Genet. 49, 699-706 (1991). [PubMed]
  14. B. C. Regan, J. P. Reffin, and J. D. Mollon, "Luminance noise and the rapid determination of discrimination ellipses in colour deficiency," Vision Res. 34, 1279-1299 (1994). [CrossRef] [PubMed]
  15. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, "Dynamics of the eye's wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001). [CrossRef]
  16. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  17. A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Visual Sci. 44, 4580-4592 (2003). [CrossRef]
  18. A. Roorda, A. B. Metha, P. Lennie, and D. R. Williams, "Packing arrangement of the three cone classes in primate retina," Vision Res. 41, 1291-1306 (2001). [CrossRef] [PubMed]
  19. A. Roorda and D. R. Williams, "The arrangement of the three cone classes in the living human eye," Nature 397, 520-522 (1999). [CrossRef] [PubMed]
  20. L. Galli-Resta, E. Novelli, Z. Kryger, G. H. Jacobs, and B. E. Reese, "Modelling the mosaic organization of rod and cone photoreceptors with a minimal-spacing rule," Eur. J. Neurosci. 11, 1461-1469 (1999). [CrossRef] [PubMed]
  21. M. B. Shapiro, S. J. Schein, and F. M. de Monasterio, "Regularity and structure of the spatial pattern of blue cones of the Macaque retina," J. Am. Stat. Assoc.803-812 (1985).
  22. H. Wässle and H. J. Riemann, "The mosaic of nerve cells in the mammalian retina," Proc. R. Soc. London, Ser. B 200, 441-461 (1978). [CrossRef]
  23. X. J. Zhan and J. B. Troy, "Modeling cat retinal beta-cell arrays," Visual Neurosci. 17, 23-39 (2000). [CrossRef]
  24. P. R. Kinnear and A. Sahraie, "New Farnsworth-Munsell 100 hue test norms of normal observers for each year of age 5-22 and for age decades 30-70," Br. J. Ophthamol. 86, 1408-1411 (2002). [CrossRef]
  25. V. C. Smith, J. Pokorny, and A. S. Pass, "Color-axis determination on the Farnsworth-Munsell 100-hue test," Am. J. Ophthalmol. 100, 176-182 (1985).
  26. A. Kurtenbach, U. Schiefer, A. Neu, and E. Zrenner, "Preretinopic changes in the colour vision of juvenile diabetics," Br. J. Ophthamol. 83, 43-46 (1999). [CrossRef]
  27. M. Pelizzone, J. Sommerhalder, A. Roth, and D. Hermès, "Automated Rayleigh and Moreland matches on a computer-controlled anomaloscope," in Colour Vision Deficiencies, B.Drum, J.D.Moreland, and A.Serra, eds. (Kluwer, 1991), pp. 151-159. [CrossRef]
  28. D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. De Souza, M. Gualtieri, D. Bonci, and M. F. Costa, "Preliminary norms for the Cambridge Colour Test," in Normal & Defective Colour Vision, J.D.Mollon, J.Pokorny, and K.Knoblauch, eds. (Oxford U. Press, 2003), pp. 331-339. [CrossRef]
  29. R. E. Stenkamp, S. Filipek, C. A. G. G. Driessen, D. C. Teller, and K. Palczewski, "Crystal structure of rhodopsin: a template for cone visual pigments and other G protein-coupled receptors," Biochim. Biophys. Acta 1565, 168-182 (2002). [CrossRef]
  30. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, "Organization of the human trichromatic cone mosaic," J. Neurosci. 25, 9669-9679 (2005). [CrossRef] [PubMed]
  31. J. Carroll, M. Neitz, J. Wolfing, D. Gray, J. Neitz, and D. R. Williams, "Different genetic causes of red-green color blindness give rise to different retinal phenotypes as assessed with adaptive optics," Invest. Ophthalmol. Visual Sci. 45, E-Abstract 4341 (2004).
  32. N. J. Coletta and D. R. Williams, "Psychophysical estimate of extrafoveal cone spacing," J. Opt. Soc. Am. A 4, 1503-1513 (1987). [CrossRef] [PubMed]
  33. D. R. Williams and N. J. Coletta, "Cone spacing and the visual resolution limit," J. Opt. Soc. Am. A 4, 1514-1523 (1987). [CrossRef] [PubMed]
  34. N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, "The locus of fixation and the foveal cone mosaic," J. Vision 5, 632-639 (2005). [CrossRef]
  35. C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, "Distribution and morphology of human cone photoreceptors stained with anti-blue opsin," J. Comp. Neurol. 312, 610-624 (1991). [CrossRef] [PubMed]
  36. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990). [CrossRef] [PubMed]
  37. H. Gao and J. G. Hollyfield, "Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells," Invest. Ophthalmol. Visual Sci. 33, 1-17 (1992).
  38. P. D. Spear, "Neural bases of visual deficits during aging," Vision Res. 33, 2589-2609 (1993). [CrossRef] [PubMed]
  39. G. R. Jackson, C. Owsley, and C. A. Curcio, "Photoreceptor degeneration and dysfunction in aging and age-related maculopathy," Aging Res. Rev. 1, 381-396 (2002). [CrossRef]
  40. Q. V. Hoang, R. A. Linsenmeier, C. K. Chung, and C. A. Curcio, "Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation," Visual Neurosci. 19, 395-407 (2002). [CrossRef]
  41. A. E. Hendrickson and C. Yuodelis, "The morphological development of the human fovea," Ophthalmology 91, 603-612 (1984). [PubMed]
  42. C. Yuodelis and A. Hendrickson, "A qualitative and quantitative analysis of the human fovea during development," Vision Res. 26, 847-855 (1986). [CrossRef] [PubMed]
  43. C. Diaz-Araya and J. M. Provis, "Evidence of photoreceptor migration during early foveal development: a quantitative analysis of human fetal retinae," Visual Neurosci. 8, 505-514 (1992). [CrossRef]
  44. J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, "Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness," Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004). [CrossRef] [PubMed]
  45. T. P. Dryja, L. B. Hahn, G. S. Cowley, T. L. McGee, and E. L. Berson, "Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa," Proc. Natl. Acad. Sci. U.S.A. 88, 9370-9374 (1991). [CrossRef] [PubMed]
  46. C. H. Sung, C. M. Davenport, J. C. Hennessey, I. H. Maumenee, S. G. Jacobson, J. R. Heckenlively, R. Nowakowski, G. Fishman, P. Gouras, and J. Nathans, "Rhodopsin mutations in autosomal dominant retinitis pigmentosa," Proc. Natl. Acad. Sci. U.S.A. 88, 6481-6485 (1991). [CrossRef] [PubMed]
  47. C. A. Curcio, C. L. Millican, K. A. Allen, and R. E. Kalina, "Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina," Invest. Ophthalmol. Visual Sci. 34, 3278-3296 (1993).
  48. G. H. Henry, B. L. Cole, and J. Nathan, "The inheritance of congenital tritanopia with the report of an extensive pedigree," Ann. Hum. Genet. 27, 219-231 (1964). [CrossRef] [PubMed]
  49. M. Neitz and J. Neitz, "Molecular genetics of color vision and color vision defects," Arch. Ophthalmol. (Chicago) 118, 691-700 (2000).
  50. J. Carroll, J. Neitz, and M. Neitz, "Estimates of L:M cone ratio from ERG flicker photometry and genetics," J. Vision 2, 531-542 (2002). [CrossRef]
  51. L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, and J. Nathans, "Red, green, and red-green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities," J. Neurosci. 18, 10053-10069 (1998). [PubMed]
  52. S. K. Shevell, J. C. He, P. Kainz, J. Neitz, and M. Neitz, "Relating color discrimination to photopigment genes in deutan observers," Vision Res. 38, 3371-3376 (1998). [CrossRef]
  53. J. Neitz, M. Neitz, and P. M. Kainz, "Visual pigment gene structure and the severity of color vision defects," Science 274, 801-804 (1996). [CrossRef] [PubMed]
  54. J. W. L. Parry, S. Poopalasundaram, J. K. Bowmaker, and D. M. Hunt, "A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment," Biochemistry 43, 8014-8020 (2004). [CrossRef] [PubMed]
  55. S. Yokoyama, W. T. Starmer, Y. Takahashi, and T. Tada, "Tertiary structure and spectral tuning of UV and violet pigments in vertebrates," Gene 365, 95-103 (2006). [CrossRef]
  56. J. I. Fasick, N. Lee, and D. D. Oprian, "Spectral tuning in the human blue cone pigment," Biochemistry 38, 11593-11596 (1999). [CrossRef] [PubMed]
  57. H. J. Dartnall, J. K. Bowmaker, and J. D. Mollon, "Human visual pigments: microspectrophotometric results from the eyes of seven persons," Proc. R. Soc. London, Ser. B 220, 115-130 (1983). [CrossRef]
  58. A. E. Krill, V. C. Smith, and J. Pokorny, "Further studies supporting the identity of congenital tritanopia and hereditary dominant optic atrophy," Invest. Ophthalmol. 10, 457-465 (1971). [PubMed]
  59. D. P. Smith, B. L. Cole, and A. Isaacs, "Congenital tritanopia without neuroretinal disease," Invest. Ophthalmol. 12, 608-617 (1973). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited