OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 6 — Jun. 13, 2007

Automated segmentation of retinal blood vessels and identification of proliferative diabetic retinopathy

Herbert F. Jelinek, Michael J. Cree, Jorge J. G. Leandro, João V. B. Soares, Roberto M. Cesar, Jr., and A. Luckie  »View Author Affiliations

JOSA A, Vol. 24, Issue 5, pp. 1448-1456 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (589 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Proliferative diabetic retinopathy can lead to blindness. However, early recognition allows appropriate, timely intervention. Fluorescein-labeled retinal blood vessels of 27 digital images were automatically segmented using the Gabor wavelet transform and classified using traditional features such as area, perimeter, and an additional five morphological features based on the derivatives-of-Gaussian wavelet-derived data. Discriminant analysis indicated that traditional features do not detect early proliferative retinopathy. The best single feature for discrimination was the wavelet curvature with an area under the curve (AUC) of 0.76. Linear discriminant analysis with a selection of six features achieved an AUC of 0.90 (0.73–0.97, 95% confidence interval). The wavelet method was able to segment retinal blood vessels and classify the images according to the presence or absence of proliferative retinopathy.

© 2007 Optical Society of America

OCIS Codes
(070.5010) Fourier optics and signal processing : Pattern recognition
(100.5010) Image processing : Pattern recognition

ToC Category:
Clinical Applications of Retinal Imaging

Original Manuscript: August 15, 2006
Revised Manuscript: November 21, 2006
Manuscript Accepted: December 20, 2006
Published: April 11, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

Herbert F. Jelinek, Michael J. Cree, Jorge J. G. Leandro, João V. B. Soares, Roberto M. Cesar, and A. Luckie, "Automated segmentation of retinal blood vessels and identification of proliferative diabetic retinopathy," J. Opt. Soc. Am. A 24, 1448-1456 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. R. Taylor and J. E. Keeffe, "World blindness: a 21st century perspective," Br. J. Ophthamol. 85, 261-266 (2001). [CrossRef]
  2. K. Viswanath and M. McGavin, "Diabetic retinopathy: clinical findings and management," Community Eye Health 16, 21-24 (2003).
  3. K. S. Coyne, M. K. Margolis, T. Kennedy-Martin, T. M. Baker, R. Klein, M. D. Paul, and D. A. Revicki, "The impact of diabetic retinopathy: perspectives from patient focus groups," Fam. Pract. 21, 447-453 (2004). [CrossRef] [PubMed]
  4. J. Kanski, Clinical Ophthalmology: A Systematic Approach (Butterworth-Heinemann, 1989), pp. 465-479.
  5. U. Freudentsin and J. Verne, "A national screening programme for diabetic retinopathy," BMJ 323, 4-5 (2001). [CrossRef]
  6. S. J. Lee, C. Sicari, C. A. Harper, H. R. Taylor, and J. E. Keeffe, "Program for the early detection of diabetic retinopathy: a two-year follow-up," Clin. Exp. Optom. 29, 12-25 (2001).
  7. T. Walter, J. C. Klein, P. Massin, and F. Zana, "Automated segmentation and registration of retinal fluorescein angiographies," presented at the First International Workshop on Computer Assisted Fundus Image Analysis (CAFIA), Herlev Hospital, Copenhagen, Denmark, May 29-30, 2000.
  8. X. W. Gao, A. Bharath, A. Stanton, A. Hughes, N. Chapman, and S. Thorn, "Quantification and characterisation of arteries in retinal images," Comput. Methods Programs Biomed. 63, 133-146 (2000). [CrossRef] [PubMed]
  9. A. Hoover, V. Kouznetsova, and M. Goldbaum, "Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response," IEEE Trans. Med. Imaging 19, 203-210 (2000). [CrossRef] [PubMed]
  10. F. Zana and J.-C. Klein, "Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation," IEEE Trans. Image Process. 10, 1010-1019 (2000). [CrossRef]
  11. C. Kirbas and F. Quek, "A review of vessel extraction techniques and algorithms," ACM Comput. Surv. 32, 81-121 (2004). [CrossRef]
  12. X. Jiang and D. Mojon, "Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images," IEEE Trans. Pattern Anal. Mach. Intell. 25, 131-137 (2003). [CrossRef]
  13. J. J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. van Ginneken, "Ridge based vessel segmentation in color images of the retina," IEEE Trans. Med. Imaging 23, 501-509 (2004). [CrossRef] [PubMed]
  14. D. Nain, A. Yezzi, and G. Turk, "Vessel segmentation using a shape driven flow," presented at the Medical Image Computing and Computer-Assisted Intervention (MICCAI), Saint-Malo, France, September 26-29, 2004.
  15. D. Cornforth, H. F. Jelinek, J. J. G. Leandro, J. V. B. Soares, R. M. Cesar, Jr., M. J. Cree, P. Mitchell, and T. Bossomaier, "Evolution of retinal blood vessel segmentation using wavelet transform in assessment of diabetic retinopathy," Complexity International 11, 50-60 (2005), http://www.complexity.org.au/ci/vol11/.
  16. M. J. Cree, J. J. G. Leandro, J. V. B. Soares, R. M. Cesar, Jr., H. F. Jelinek, and D. Cornforth, "Comparison of various methods to delineate blood vessels in retinal images," in Proceedings of the 16th Australian Institute of Physics Congress (AIP, 2005) pp. 1-4.
  17. J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, Jr., H. F. Jelinek, and M. J. Cree, "Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification," IEEE Trans. Med. Imaging 25, 1214-1222 (2006). [CrossRef] [PubMed]
  18. L. F. Costa and R. M. Cesar, Jr., Shape Analysis and Classification: Theory and Practice (CRC, 2001).
  19. J. P. Antoine, D. Barache, R. M. Cesar, Jr., and L. F. Costa, "Shape characterization with the wavelet transform," Signal Process. 62, 265-290 (1997). [CrossRef]
  20. A. Arnéodo, N. Decoster, and S. G. Roux, "A wavelet-based method for multifractal image analysis. I. Methodology and test applications on isotropic and anisotropic random rough surfaces," Eur. Phys. J. B 15, 567-600 (2000). [CrossRef]
  21. A. Grossmann, "Wavelet transforms and edge detection," in Stochastic Processes in Physics and Engineering, S.Albeverio, P.Blanchard, M.Hazewinkel, and L.Streit, eds. (Reidel, 1988), pp. 149-157. [CrossRef]
  22. M. J. Cree, J. A. Olson, K. McHardy, P. Sharp, and J. Forrester, "A fully automated comparative microaneurysm digital detection system," Eye 11, 622-628 (1997). [CrossRef] [PubMed]
  23. J. Hipwell, F. Strachan, J. Olson, K. McHardy, P. Sharp, and J. Forrester, "Automated detection of microaneurysms in digital red-free photographs: a diabetic retinopathy screening tool," Diabetic Med. 17, 588-594 (2000). [CrossRef] [PubMed]
  24. C. Sinthanayothin, J. F. Boyce, H. Cook, and T. Williamson, "Automated localisation of the optic disc, fovea and retinal blood vessels from digital colour fundus images" Br. J. Ophthamol. 83, 902-912 (1999). [CrossRef]
  25. A. Osareh, M. Mirmehdi, B. Thomas, and R. Markham, "Automated identification of diabetic retinal exudates in digital colour images," Br. J. Ophthamol. 87, 1220-1223 (2003). [CrossRef]
  26. M. E. Martinez-Perez, A. D. Hughes, A. V. Stanton, S. A. Thom, N. Chapman, A. A. Bharath, and K. H. Parker, "Retinal vascular tree morphology: a semi-automatic quantification," IEEE Trans. Biomed. Eng. 49, 912-917 (2002). [CrossRef] [PubMed]
  27. R. M. Cesar, Jr., and H. F. Jelinek, "Segmentation of retinal fundus vasculature in nonmydriatic camera images using wavelets," in Angiography and Plaque Imaging, J.S.Suri and S.Laxminarayan, eds. (CRC, 2003), pp. 193-224.
  28. B. R. Masters, "Fractal analysis of the vascular tree in the human retina," Annu. Rev. Biomed. Eng. 6, 427-452 (2004). [CrossRef] [PubMed]
  29. H. F. Jelinek, R. M. Cesar, Jr., and J. J. G. Leandro, "Exploring wavelet transforms for morphological differentiation between functionally different cat retinal ganglion cells," Brain and Mind 4, 67-90 (2003). [CrossRef]
  30. J. P. Antoine, P. Carette, R. Murenzi, and B. Piette, "Image analysis with two-dimensional wavelet transform," Signal Process. 3l, 241-272 (1993). [CrossRef]
  31. J. J. G. Leandro, J. V. B. Soares, R. M. Cesar, Jr., and H. F. Jelinek, "Blood vessel segmentation of non-mydriatic images using wavelets and statistical classifiers," in Proceedings of the Brazilian Conference on Computer Graphics, Image Processing and Vision (Sibgrapi, 2003), pp. 262-269.
  32. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. (Wiley Interscience, 2001).
  33. L. F. Estrozi, L. G. Rios, A. G. Campos, R. M. Cesar, Jr., and L. d. F. Costa, "1D and 2D Fourier-based approaches to numeric curvature estimation and their comparative performance assessment," Digit. Signal Process. 13, 172-197 (2003). [CrossRef]
  34. P. Asvestas, G. K. Matsopoulos, and K. S. Nikita, "Estimating of fractal dimension of images using fixed mass approach," Pattern Recogn. Lett. 20, 347-354 (1999). [CrossRef]
  35. J. P. Rigaut, "An empirical formulation relating boundary lengths to resolution in specimens showing 'non-ideally fractal' dimensions," J. Microsc. 133, 41-54 (1984). [CrossRef]
  36. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using Matlab (Pearson Prentice Hall, 2004).
  37. C. E. Metz, "ROC methodology in radiologic imaging," Invest. Radiol. 21, 720-733 (1986). [CrossRef]
  38. E. Sussman, W. Tsiaras, and K. Soper, "Diagnosis of diabetic eye disease," J. Am. Med. Assoc. 247, 3231-3234 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited