OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 7 — Jul. 16, 2007

Characterizing contrast adaptation in a population of cat primary visual cortical neurons using Fisher information

Szonya Durant, Colin W.G. Clifford, Nathan A. Crowder, Nicholas S.C. Price, and Michael R. Ibbotson  »View Author Affiliations

JOSA A, Vol. 24, Issue 6, pp. 1529-1537 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (645 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When cat V1/V2 cells are adapted to contrast at their optimal orientation, a reduction in gain and/or a shift in the contrast response function is found. We investigated how these factors combine at the population level to affect the accuracy for detecting variations in contrast. Using the contrast response function parameters from a physiologically measured population, we model the population accuracy (using Fisher information) for contrast discrimination. Adaptation at 16%, 32%, and 100% contrast causes a shift in peak accuracy. Despite an overall drop in firing rate over the whole population, accuracy is enhanced around the adapted contrast and at higher contrasts, leading to greater efficiency of contrast coding at these levels. The estimated contrast discrimination threshold curve becomes elevated and shifted toward higher contrasts after adaptation, as has been found previously in human psychophysical experiments.

© 2007 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(170.5660) Medical optics and biotechnology : Raman spectroscopy

ToC Category:
Vision and Color

Original Manuscript: July 5, 2006
Revised Manuscript: December 19, 2006
Manuscript Accepted: December 22, 2006
Published: May 9, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Szonya Durant, Colin W. G. Clifford, Nathan A. Crowder, Nicholas S. C. Price, and Michael R. Ibbotson, "Characterizing contrast adaptation in a population of cat primary visual cortical neurons using Fisher information," J. Opt. Soc. Am. A 24, 1529-1537 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Maffei, A. Fiorentini, and S. Bisti, "Neural correlate of perceptual adaptation to gratings," Science 182, 1036-1038 (1973). [CrossRef] [PubMed]
  2. R. G. Vautin and M. A. Berkley, "Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects," J. Neurophysiol. 40, 1051-1065 (1977). [PubMed]
  3. J. A. Movshon and P. Lennie, "Pattern-selective adaptation in visual cortical neurones," Nature 278, 850-852 (1979). [CrossRef] [PubMed]
  4. A. F. Dean, "Adaptation-induced alternation of the relation between response amplitude and contrast in cat striate cortical neurones," Vision Res. 23, 249-256 (1983). [CrossRef] [PubMed]
  5. I. Ohzawa, G. Sclar, and R. D. Freeman, "Contrast gain control in the cat visual cortex," Nature 298, 266-268 (1982). [CrossRef] [PubMed]
  6. I. Ohzawa, G. Sclar, and R. D. Freeman, "Contrast gain control in the cat's visual system," J. Neurophysiol. 54, 651-667 (1985). [PubMed]
  7. G. Sclar, P. Lennie, and D. DePriest, "Contrast adaptation in striate cortex of macaque," Vision Res. 29, 747-755 (1989). [CrossRef] [PubMed]
  8. M. Carandini, "Visual cortex: fatigue and adaptation," Curr. Biol. 10, R605-R607 (2000). [CrossRef] [PubMed]
  9. M. J. Wainwright, O. Schwartz, and E. P. Simoncelli, "Natural image statistics and divisive normalization," in Probabilistic Models of the Brain, R.P. N.Rao, B.A.Olshausen, and M.S.Lewicki, eds. (MIT, 2002), pp. 203-222.
  10. N. A. Crowder, N. S. Price, M. A. Hietanen, C. W. G. Clifford, and M. R. Ibbotson, "Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex," J. Neurophysiol. 95, 271-283 (2006). [CrossRef]
  11. B. R. Payne and A. Peters, The Cat Primary Visual Cortex (Academic, 2002).
  12. S. G. Solomon, J. W. Pearce, N. T. Dhruv, and P. Lennie, "Profound contrast adaptation early in the visual pathway," Neuron 42, 155-162 (2004). [CrossRef] [PubMed]
  13. M. Chirimuuta, P. L. Clatworthy, and D. J. Tolhurst, "Coding of the contrast in natural images by visual cortex (V1) neurons: a Bayesian approach," J. Opt. Soc. Am. A 20, 1253-1260 (2003). [CrossRef]
  14. P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT, 2001).
  15. N. S. Harper and D. McAlpine, "Optimal neural population coding of an auditory spatial cue," Nature 430, 682-686 (2004). [CrossRef] [PubMed]
  16. I. Dean, N. S. Harper, and D. McAlpine, "Neural population coding of sound level adapts to stimulus statistics," Nat. Neurosci. 8, 1684-1689 (2005). [CrossRef] [PubMed]
  17. D. I. A. Macleod and T. von der Twer, "Optimal opponent colours," in Colour Perception: Mind and the Physical World, R.Mausfeld and D.Heyer, eds. (Oxford U. Press, 2003), pp. 155-184.
  18. D. A. Butts and M. S. Goldman, "Tuning curves, neuronal variability and sensory coding," PLOS Comput. Biol. 4, 1-8 (2006).
  19. N. Brunel and J.-P. Nadal, "Mutual information, Fisher information, and population coding," Neural Comput. 10, 1731-1757 (1998). [CrossRef] [PubMed]
  20. A. Gottschalk, "Derivation of the visual contrast response function by maximizing information rate," Neural Comput. 14, 527-542 (2002). [CrossRef] [PubMed]
  21. H. B. Barlow, D. I. A. Macleod, and A. Van Meeteren, "Adaptation to gratings: no compensatory advantages found," Vision Res. 16, 1043-1045 (1976). [CrossRef] [PubMed]
  22. J. J. Kulikowski and A. Gorea, "Complete adaptation to patterned stimuli: a necessary and sufficient condition for Weber's law for contrast," Vision Res. 18, 1223-1227 (1978). [CrossRef] [PubMed]
  23. G. E. Legge and J. M. Foley, "Contrast masking in human vision," J. Opt. Soc. Am. 70, 1458-1469 (1980). [CrossRef] [PubMed]
  24. M. W. Greenlee and F. Heitger, "Functional role of contrast adaptation," Vision Res. 28, 791-797 (1988). [CrossRef] [PubMed]
  25. J. Ross, H. D. Speed, and M. J. Morga, "The effects of adaptation and masking on incremental thresholds for contrast," Vision Res. 33, 2051-2056 (1993). [CrossRef] [PubMed]
  26. J. M. Foley and C. Chen, "Analysis of the effect of pattern adaptation on pattern pedestal effects: a two process model," Vision Res. 37, 2779-2788 (1997). [CrossRef] [PubMed]
  27. G. Abbonizio, K. Langley, and C. W. G. Clifford, "Contrast adaptation may enhance contrast discrimination," Spatial Vis. 16, 45-58 (2002). [CrossRef]
  28. D. G. Albrecht and D. B. Hamilton, "Striate cortex of monkey and cat: contrast response function," J. Neurosci. 48, 217-237 (1982).
  29. M. C. Teich, "Fractal character of the auditory neural spike train," IEEE Trans. Biomed. Eng. 36, 150-160 (1989). [CrossRef] [PubMed]
  30. D. J. Tolhurst, J. A. Movshon, and A. F. Dean, "The statistical reliability of signals in single neurons in cat and monkey visual cortex," Vision Res. 23, 775-785 (1983). [CrossRef] [PubMed]
  31. D. J. Tolhurst, J. A. Movshon, and I. D. Thompson, "The dependence of response amplitude and variance of cat visual cortical-neurons on stimulus contrast," Exp. Brain Res. 41, 414-419 (1981). [CrossRef] [PubMed]
  32. W. S. Geisler and D. G. Albrecht, "Visual cortex neurons in monkeys and cats: detection, discrimination, and identification," Visual Neurosci. 14, 897-919 (1997). [CrossRef]
  33. P. L. Clatworthy, M. Chirimuuta, J. S. Lauritzen, and D. J. Tolhurst, "Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1)," Vision Res. 43, 1983-2001 (2003). [CrossRef] [PubMed]
  34. D. L. Ruderman and W. Bialek, "Statistics of natural images: scaling the woods," Phys. Rev. Lett. 74, 814-818 (1994). [CrossRef]
  35. T. Q. Vu, S. T. McCarthy, and G. W. Owen, "Linear transduction of natural stimuli by dark adapted rods of the salamander, Ambystoma tirgrinum," J. Physiol. (London) 505, 193-204 (1997). [CrossRef]
  36. N. Brady and D. J. Field, "Local contrast in natural images: normalisation and coding efficiency," Perception 29, 1041-1055 (2000). [CrossRef]
  37. Y. Tadmor and D. J. Tolhurst, "Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes," Vision Res. 40, 3145-3157 (2000). [CrossRef] [PubMed]
  38. R. M. Balboa and N. M. Grzywacz, "Power spectra and distribution of contrasts of natural images from different habitats," Vision Res. 43, 2527-2537 (2003). [CrossRef] [PubMed]
  39. S. B. Laughlin, R. R. Ruyter, and J. C. Anderson, "The metabolic cost of neural information," Nat. Neurosci. 1, 36-41 (1998). [CrossRef]
  40. P. Lennie, "The cost of cortical computation," Curr. Biol. 13, 293-497 (2003). [CrossRef]
  41. J. Nachmias and R. V. Sansbury, "Grating contrast: discrimination may be better than detection," Vision Res. 14, 1039-1042 (1974). [CrossRef] [PubMed]
  42. A. A. Stocker and E. P. Simoncelli, "Sensory adaptation within a Bayesian framework for perception," in Advances in Neural Information Processing Systems, Y.Weiss, B.Schoelkopf, and J.Platt, eds. (MIT, 2006), pp. 1291-1298.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited