OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 7 — Jul. 16, 2007

Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling

Dominic Giguère, Gilles Olivié, François Vidal, Stéphanie Toetsch, Guillaume Girard, Tsuneyuki Ozaki, Jean-Claude Kieffer, Ossama Nada, and Isabelle Brunette  »View Author Affiliations

JOSA A, Vol. 24, Issue 6, pp. 1562-1568 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (173 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The surface ablation threshold fluence of fused silica and two porcine cornea layers, the epithelium and the stroma, is characterized as a function of the laser pulse duration in the range of 100 fs 5 ps for a wavelength of 800 nm (Ti:sapphire laser system). The plateaulike region observed between 100 fs and 1 ps for the corneal layers indicates that for use in laser surgery, laser pulse durations chosen within this range should be practically equivalent. Our model predicts that the ablation threshold will decrease rapidly for pulse durations in the low end of the femtosecond regime.

© 2007 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.4470) Medical optics and biotechnology : Ophthalmology

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 29, 2006
Revised Manuscript: December 1, 2006
Manuscript Accepted: December 21, 2006
Published: May 9, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Dominic Giguère, Gilles Olivié, François Vidal, Stéphanie Toetsch, Guillaume Girard, Tsuneyuki Ozaki, Jean-Claude Kieffer, Ossama Nada, and Isabelle Brunette, "Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling," J. Opt. Soc. Am. A 24, 1562-1568 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Bäuerle, Laser Processing and Chemistry (Springer, 2000), Chap. 13.
  2. A. Vogel, J. Noak, G. Huttman, and G. Paltauf, "Mechanism of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005). [CrossRef]
  3. H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, "Application of ultrashort laser pulses for intrastromal refractive surgery," Graefe's Arch. Clin. Exp. Ophthalmol. 238, 33-39 (2000). [CrossRef]
  4. P. S. Binder, "Flap dimensions created with the IntraLase FS laser," J. Cataract Refractive Surg. 30, 26-32 (2004). [CrossRef]
  5. D. Touboul, F. Salin, B. Mortemousque, P. Chabassier, E. Mottay, F. Leger, and J. Colin, "Advantages and disadvantages of the femtosecond laser microkeratome," J. Fr. Ophtalmol 28, 535-546 (2005). [CrossRef] [PubMed]
  6. J. H. Talamo, J. Meltzer, and J. Gardner, "Reproducibility of flap thickness with IntraLase FS and Moria LSK-1 and M2 microkeratomes," J. Refract. Surg. 22, 556-561 (2006). [PubMed]
  7. T. Lim, S. Yang, M. Kim, and H. Tchah, "Comparison of the IntraLase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Am. J. Ophthalmol. 141, 833-839 (2006). [CrossRef] [PubMed]
  8. D. B. Tran, M. A. Sarayba, Z. Bor, C. Garufis, Y. J. Duh, C. R. Soltes, T. Juhasz, and R. M. Kurtz, "Randomized prospective clinical study comparing induced aberrations with intralase and Hansatomeflap creation in fellow eyes: potential impact on wave front guided laser in situ keratomiliusis," J. Cataract Refractive Surg. 31, 97-105 (2005). [CrossRef]
  9. I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, and R. Kurtz, "Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation," Ophthalmology Clinics of North America 14, 347-355 (2001). [PubMed]
  10. B. Seitz, H. Brunner, A. Viestenz, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, G. O. Naumann, and A. Langenbucher, "Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser," Am. J. Ophthalmol. 139, 941-994 (2005). [CrossRef] [PubMed]
  11. M. A. Sarayba, T. Juhasz, R. S. Chuck, T. S. Ignacio, T. B. Nguyen, P. Sweet, and R. M. Kurtz, "Femtosecond laser posterior lamellar keratoplasty: a laboratory model," Cornea 24, 328-333 (2005). [CrossRef] [PubMed]
  12. M. A. Terry, P. J. Ousley, and B. Will, "A practical femtosecond laser procedure for DLEK endothelial transplantation: cadaver eye histology and topography," Cornea 24, 453-459 (2005). [CrossRef] [PubMed]
  13. B. Seitz, A. Langenbucher, C. Hofmann-Rummelt, U. Schotzer-Schrehardt, and G. O. Naumann, "Nonmechanichal posterior lamellar keratoplasty using the femtosecond laser (femto-plak) for corneal endothelial decompensation," Am. J. Ophthalmol. 136, 769-762 (2003). [CrossRef] [PubMed]
  14. T. Sami, L. Yaoming, S. Sima, S. Sun, R. C. Michael, J. G. Robert, and P. E. Deepak, "Femtosecond photodisruption of human trabecular meshwork: an in vitro study," Exp. Eye Res. 81, 298-305 (2005). [CrossRef]
  15. J. Y. Kim, M. J. Kim, T. Kim, H. N. Choi, J. H. Pak, and H. Tchah, "A femtosecond laser creates a stronger flap than a mechanical microkeratome," Invest. Ophthalmol. Visual Sci. 47, 599-604 (2006). [CrossRef]
  16. B. Sonigo, V. Iordanidou, D. Chong-Sit, F. Auclin, J. M. Ancel, A. Labbe, and C. Baudouin, "In vivo corneal confocal microscopy comparison of intralase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis," Invest. Ophthalmol. Visual Sci. 47, 2803-2811 (2006). [CrossRef]
  17. S. Preuss, A. Demchuk, and M. Stuke, "Sub-picosecond UV laser ablation of metals," Appl. Phys. A A61, 33-37 (1995). [CrossRef]
  18. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond to femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996). [CrossRef]
  19. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, and G. Mourou, "Femtosecond optical breakdown in dielectrics," Phys. Rev. Lett. 80, 4076-4079 (1998). [CrossRef]
  20. A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999). [CrossRef]
  21. F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, "Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model," IEEE J. Quantum Electron. 32, 1717-1722 (1996). [CrossRef]
  22. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219-221 (1985). [CrossRef]
  23. E. P. Ippen and C. V. Shank, "Techniques for measurement," in Ultrashort Light Pulses, S.L.Shapiro, ed. (Springer, 1984).
  24. B. T. Fisher, K. A. Masiello, M. H. Goldstein, and D. W. Hahn, "Assessment of transient changes in corneal hydration using confocal Raman spectroscopy," Cornea 22, 263-370 (2003). [CrossRef]
  25. K. B. Wharton, C. D. Boley, A. M. Rubenchik, J. Z. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, "Effect of nonionizing prepulses in high-intensity laser-solid interactions," Phys. Rev. E 64, 025401(R) (2001). [CrossRef]
  26. M. H. Niemz, T. Hoppeler, T. Juhasz, and J. F. Bille, "Intrastromal ablations for refractive corneal surgery using picosecond infrared laser pulses," Laser Light Ophtalmology 5, 145-152 (1993).
  27. G. Girard, S. Zhou, N. Bigaouette, I. Brunette, M. Chaker, L. Germain, P.-L. Lavertu, F. Martin, G. Olivié, T. Ozaki, M. Parent, F. Vidal, and J.-C. Kieffer, "Investigation of ultrashort pulse laser ablation of the cornea and hydrogels for eye microsurgery," Proc. SPIE 5578, 32-42 (2004).
  28. R. W. P. McWhirter, "Spectral intensities," in Plasma Diagnostics Techniques, R.H.Huddlestone and S.L.Leonards, eds. (Academic, 1965).
  29. R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, "A new quotidian equation of state (QEOS) for hot dense matter," Phys. Fluids 31, 3059-3078 (1988). [CrossRef]
  30. D. Arnold, E. Cartier, and D. J. DiMaria, "Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide," Phys. Rev. B 45, 1477-1480 (1992). [CrossRef]
  31. J. A. Squier and M. Muller, "High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging," Rev. Sci. Instrum. 72, 2855-2867 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited