OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 7 — Jul. 16, 2007

AIDA: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data

Erik F. Y. Hom, Franck Marchis, Timothy K. Lee, Sebastian Haase, David A. Agard, and John W. Sedat  »View Author Affiliations


JOSA A, Vol. 24, Issue 6, pp. 1580-1600 (2007)
http://dx.doi.org/10.1364/JOSAA.24.001580


View Full Text Article

Enhanced HTML    Acrobat PDF (1746 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe an adaptive image deconvolution algorithm (AIDA) for myopic deconvolution of multi-frame and three-dimensional data acquired through astronomical and microscopic imaging. AIDA is a reimplementation and extension of the MISTRAL method developed by Mugnier and co-workers and shown to yield object reconstructions with excellent edge preservation and photometric precision [ J. Opt. Soc. Am. A 21, 1841 (2004) ]. Written in Numerical Python with calls to a robust constrained conjugate gradient method, AIDA has significantly improved run times over the original MISTRAL implementation. Included in AIDA is a scheme to automatically balance maximum-likelihood estimation and object regularization, which significantly decreases the amount of time and effort needed to generate satisfactory reconstructions. We validated AIDA using synthetic data spanning a broad range of signal-to-noise ratios and image types and demonstrated the algorithm to be effective for experimental data from adaptive optics–equipped telescope systems and wide-field microscopy.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(100.1830) Image processing : Deconvolution
(100.3020) Image processing : Image reconstruction-restoration
(100.3190) Image processing : Inverse problems
(180.0180) Microscopy : Microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Image Processing

History
Original Manuscript: June 6, 2006
Revised Manuscript: October 19, 2006
Manuscript Accepted: December 7, 2006
Published: May 9, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Erik F. Y. Hom, Franck Marchis, Timothy K. Lee, Sebastian Haase, David A. Agard, and John W. Sedat, "AIDA: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data," J. Opt. Soc. Am. A 24, 1580-1600 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-24-6-1580


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Roddier, Adaptive Optics in Astronomy (Cambridge U. Press, 2004).
  2. J. C. Christou, D. Bonnacini, N. Ageorges, and F. Marchis, "Myopic deconvolution of adaptive optics images," ESO Messenger 97, 14-22 (1999).
  3. J.-P. Véran, F. Rigaut, M. Henri, and D. Rouan, "Estimation of the adaptive optics long-exposure point-spread function using control loop data," J. Opt. Soc. Am. A 14, 3057-3069 (1997). [CrossRef]
  4. S. F. Gibson and F. Lanni, "Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy," J. Opt. Soc. Am. A 8, 1601-1613 (1991). [CrossRef]
  5. D. Le Mignant, F. Marchis, D. Bonaccini, P. Prado, E. Barrios, R. Tighe, V. Merino, and A. Sanchez, The 3.60m Telescope Team, and ESO Adaptive Optics Team, "The ESO ADONIS system: a 3 years experience in observing methods," in Vol. 56 of ESO Conference and Workshop Proceedings, D.Bonaccini, ed. (European Southern Observatory, 1999), p. 287.
  6. Y. Hiraoka, J. W. Sedat, and D. A. Agard, "The use of a charge-coupled device for quantitative optical microscopy of biological structures," Science 238, 36-41 (1987). [CrossRef] [PubMed]
  7. T. J. Holmes, "Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach," J. Opt. Soc. Am. A 9, 1052-1061 (1992). [CrossRef] [PubMed]
  8. M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Institute of Physics, 1998). [CrossRef]
  9. G. R. Ayers and J. C. Dainty, "Iterative blind deconvolution method and its applications," Opt. Lett. 13, 547-549 (1988). [CrossRef] [PubMed]
  10. T. G. Stockham, T. M. Cannon, and R. B. Ingebretsen, "Blind deconvolution through digital signal processing," Proc. IEEE 63, 678-692 (1975). [CrossRef]
  11. T. J. Schulz, "Multiframe blind deconvolution of astronomical images," J. Opt. Soc. Am. A 10, 1064-1073 (1993). [CrossRef]
  12. L. M. Mugnier, T. Fusco, and J.-M. Conan, "MISTRAL: a myopic edge-preserving image restoration method, with application to astronomical adaptive-optics-corrected long-exposure images," J. Opt. Soc. Am. A 21, 1841-1854 (2004). [CrossRef]
  13. S. B. Howell, Handbook of CCD Astronomy (Cambridge U. Press, 2000).
  14. W.-Y. V. Leung and R. G. Lane, "Blind deconvolution of images blurred by atmospheric speckle," Proc. SPIE 4123, 73-83 (2000). [CrossRef]
  15. G. Demoment, "Image reconstruction and restoration: overview of common estimation structures and problems," IEEE Trans. Acoust., Speech, Signal Process. 37, 2024-2036 (1989). [CrossRef]
  16. R. Molina, J. Nunez, F. J. Cortijo, and J. Mateos, "Image restoration in astronomy: a Bayesian perspective," IEEE Signal Process. Mag. 18, 11-29 (2001). [CrossRef]
  17. J.-L. Starck and F. Murtagh, Astronomical Image and Data Analysis (Springer, 2002).
  18. J. Besag, "On the statistical analysis of dirty pictures," J. R. Stat. Soc. Ser. B (Methodol.) 48, 259-302 (1986).
  19. S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and Bayesian restoration of images," IEEE Trans. Pattern Anal. Mach. Intell. 6, 721-741 (1984). [CrossRef]
  20. P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud, "Deterministic edge-preserving regularization in computed imaging," IEEE Trans. Image Process. 6, 298-311 (1997). [CrossRef] [PubMed]
  21. C. Bouman and K. Sauer, "A generalized Gaussian image model for edge-preserving MAP estimation," IEEE Trans. Image Process. 2, 296-310 (1993). [CrossRef] [PubMed]
  22. S. Teboul, L. Blanc-Feraud, G. Aubert, and M. Barlaud, "Variational approach for edge-preserving regularization using coupled PDEs," IEEE Trans. Image Process. 7, 387-397 (1998). [CrossRef]
  23. S. Brette and J. Idier, "Optimized single site update algorithms for image deblurring," in Proceedings of IEEE International Conference on Image Processing (IEEE, 1996), Vol. 3, pp. 65-68. [CrossRef]
  24. S. S. Saquib, C. A. Bouman, and K. Sauer, "ML parameter estimation for Markov random fields with applications to Bayesian tomography," IEEE Trans. Image Process. 7, 1029-1044 (1998). [CrossRef]
  25. A. Jalobeanu, L. Blanc-Féraud, and J. Zerubia, "Adaptive parameter estimation for satellite image deconvolution," Rapport de Recherche de l'INRIA-Sophia Antipolis, Equipe ARIANA RR-3956 (INRIA, 2000).
  26. A. Jalobeanu, L. Blanc-Féraud, and J. Zerubia, "Hyperparameter estimation for satellite image restoration using a MCMC maximum-likelihood method," Pattern Recogn. 35, 341-352 (2002). [CrossRef]
  27. A. Jalobeanu, L. Blanc-Féraud, and J. Zerubia, "An adaptive Gaussian model for satellite image deblurring," IEEE Trans. Image Process. 13, 613-621 (2004). [CrossRef] [PubMed]
  28. J.-M. Conan, L. M. Mugnier, T. Fusco, V. Michau, and G. Rousset, "Myopic deconvolution of adaptive optics images by use of object and point-spread function power spectra," Appl. Opt. 37, 4614-4622 (1998). [CrossRef]
  29. T. Fusco, J.-P. Véran, J.-M. Conan, and L. M. Mugnier, "Myopic deconvolution method for adaptive optics images of stellar fields," Astron. Astrophys., Suppl. Ser. 134, 193-200 (1999). [CrossRef]
  30. S. M. Jefferies and J. C. Christou, "Restoration of astronomical images by iterative blind deconvolution," Astrophys. J. 415, 862-874 (1993). [CrossRef]
  31. J. C. Christou, A. Roorda, and D. R. Williams, "Deconvolution of adaptive optics retinal images," J. Opt. Soc. Am. A 21, 1393-1401 (2004). [CrossRef]
  32. M. Straume, "Sequential versus simultaneous analysis of data: differences in reliability of derived quantitative conclusions," Methods Enzymol. 240, 89-121 (1994). [CrossRef] [PubMed]
  33. J. C. Christou, E. K. Hege, and S. M. Jefferies, "Speckle deconvolution imaging using an iterative algorithm," Proc. SPIE 2566, 134-143 (1995). [CrossRef]
  34. H. R. Ingleby and D. R. McGaughey, "Experimental results of parallel multiframe blind deconvolution using wavelength diversity," Proc. SPIE 5578, 8-14 (2004). [CrossRef]
  35. J. C. Christou, E. K. Hege, S. M. Jefferies, and C. U. Keller, "Application of multiframe iterative blind deconvolution for diverse astronomical imaging," Proc. SPIE 2200, 433-444 (1994). [CrossRef]
  36. T. J. Schulz, B. E. Stribling, and J. J. Miller, "Multiframe blind deconvolution with real data: imagery of the Hubble Space Telescope," Opt. Express 1, 355-362 (1997). [CrossRef] [PubMed]
  37. P. Greenfield, T. Miller, W. Rick, J. C. Hsu. P. Barrett, J. Kupper, and P. J. Verveer, "Numarray: an open source project," http://www.stsci.edu/resources/softwarelowbarhardware/numarray.
  38. D. M. Beazley, "Automated scientific software scripting with SWIG," FGCS, Future Gener. Comput. Syst. 19, 599-609 (2003). [CrossRef]
  39. D. M. Beazley and the SWIG Team, "A simplified wrapper and interface generator," http://www.swig.org.
  40. M. Frigo and S. G. Johnson, "The design and implementation of FFTW3," Proc. IEEE 93, 216-231 (2005). [CrossRef]
  41. M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, 2nd ed. (Wiley, 1993).
  42. D. M. Goodman, E. M. Johansson, and T. W. Lawrence, "On applying the conjugate gradient algorithm to image processing problems," in Multivariate Analysis: Future Directions, C.R.Rao, ed., Vol. 5 of North-Holland Series in Statistics and Probability (North-Holland, 1993), Chap. 11.
  43. J. R. Somoza, H. Szoke, D. M. Goodman, P. Beran, D. Truckses, S. H. Kim, and A. Szoke, "Holographic methods in X-ray crystallography. 4. A fast algorithm and its application to macromolecular crystallography," Acta Crystallogr., Sect. A: Found. Crystallogr. 51, 691-708 (1995). [CrossRef]
  44. H. Szoke, A. Szoke, J. Somoza, and F. Maia, "The EDEN Holographic Method," http://www.edencrystallography.org/.
  45. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, 1992).
  46. R. A. Johnston, T. J. Connolly, and R. G. Lane, "An improved method for deconvolving a positive image," Opt. Commun. 181, 267-278 (2000). [CrossRef]
  47. W. K. Pratt, Digital Image Processing: PIKS Inside3rd ed. (Wiley-Interscience, 2001). [PubMed]
  48. W. Frei and C.-C. Chen, "Fast boundary detection: a generalization and a new algorithm," IEEE Trans. Comput. C26, 988-998 (1977). [CrossRef]
  49. J. E. N. Jonkman and E. H. K. Stelzer, "Resolution and contrast in confocal and two-photon microscopy," in Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances, A.Diaspro, ed. (Wiley-Liss, 2001), Chap. 5.
  50. L. H. Ryder, Quantum Field Theory (Cambridge U. Press, 1985).
  51. R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, 1999).
  52. L. M. Mugnier, C. Robert, J.-M. Conan, V. Michau, and S. Salem, "Myopic deconvolution from wave-front sensing," J. Opt. Soc. Am. A 18, 862-872 (2001). [CrossRef]
  53. C. K. Chu, I. K. Glad, F. Godtliebsen, and J. S. Marron, "Edge-preserving smoothers for image processing," J. Am. Stat. Assoc. 93, 526-541 (1998). [CrossRef]
  54. N. P. Galatsanos and A. K. Katsaggelos, "Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation," IEEE Trans. Image Process. 1, 332-336 (1992). [CrossRef]
  55. G. H. Golub, M. Heath, and G. Wahba, "Generalized cross-validation as a method for choosing a good ridge parameter," Technometrics 21, 215-223 (1979). [CrossRef]
  56. M. V. Ibáñez and A. Simó, "Parameter estimation in Markov random field image modeling with imperfect observations. A comparative study," Pattern Recogn. Lett. 24, 2377-2389 (2003). [CrossRef]
  57. A. Jalobeanu, L. Blanc-Féraud, and J. Zerubia, "Estimation of adaptive parameters for satellite image deconvolution," in Proceedings of the IEEE International Conference on Pattern Recognition, A.Sanfeliu, J.J.Villanueva, M.Vanrell, R.Alquezar, J.O.Eklundh, and Y.Aloimonos, eds., (IEEE, 2000), Vol. 3, pp. 318-321.
  58. G. G. Potamianos and J. K. Goutsias, "Partition function estimation of Gibbs random-field images using Monte Carlo simulations," IEEE Trans. Inf. Theory 39, 1322-1332 (1993). [CrossRef]
  59. Z. Y. Zhou, R. M. Leahy, and J. Y. Qi, "Approximate maximum likelihood hyperparameter estimation for Gibbs priors," IEEE Trans. Image Process. 6, 844-861 (1997). [CrossRef] [PubMed]
  60. University of Granada Computer Vision Group, "Brain magnetic resonance dataset (mr030.pgm)," http://decsai.ugr.es/cvg/dbimages/gbio256.php.
  61. E. Thiébaut and J.-M. Conan, "Strict a priori constraints for maximum-likelihood blind deconvolution," J. Opt. Soc. Am. A 12, 485-492 (1995). [CrossRef]
  62. F. Marchis, I. de Pater, A. G. Davies, H. G. Roe, T. Fusco, D. Le Mignant, P. Descamps, B. A. Macintosh, and R. Prangé, "High-resolution Keck adaptive optics imaging of violent volcanic activity on Io," Icarus 160, 124-131 (2002). [CrossRef]
  63. F. Marchis, A. G. Davies, S. G. Gibbard, D. Le Mignant, R. M. Lopes, B. Macintosh, and I. de Pater, "Volcanic activity of Io monitored with Keck-10m AO in 2003-2004," in American Geophysical Union, Fall Meeting 2004 Abstracts, (American Geophysical union, 2004), p. C1483.
  64. F. Marchis, D. Le Mignant, F. H. Chaffee, A. G. Davies, S. H. Kwok, R. Prangé, I. de Pater, P. Amico, R. Campbell, T. Fusco, R. W. Goodrich, and A. Conrad, "Keck AO survey of Io global volcanic activity between 2 and 5μm," Icarus 176, 96-122 (2005). [CrossRef]
  65. S. Douté, B. Schmitt. R. Lopes-Gautier, R. Carlson, L. Soderblom, J. Shirley, and The Galileo NIMS Team, "Mapping SO2 frost on Io by the modeling of NIMS hyperspectral images," Icarus 149, 107-132 (2001). [CrossRef]
  66. F. Marchis, "High resolution imaging of the solar system bodies by means of adaptive optics. A study of the volcanic activity of Io," Ph.D. thesis (European Southern Observatory, Chile, and Institut d'Astrophysique Spatiale, France, 2000).
  67. F. Marchis, "Theoretical PSFs for the KECK telescope and AO instruments," http://astron.berkeley.edu/~fmarchis/Science/Keck/Perfect.PSF/.
  68. B. A. Smith, L. Soderblom, R. F. Beebe, J. M. Boyce, G. Briggs, A. Bunker, S. A. Collins, C. Hansen, T. V. Johnson, J. L. Mitchell, R. J. Terrile, M. H. Carr, A. F. Cook, J. N. Cuzzi, J. B. Pollack, G. E. Danielson, A. P. Ingersoll, M. E. Davies, G. E. Hunt, H. Masursky, E. M. Shoemaker, D. Morrison, T. Owen, C. Sagan, J. Veverka, R. Strom, and V. E. Suomi, "Encounter with Saturn--Voyager 1 imaging science results," Science 212, 163-191 (1981). [CrossRef] [PubMed]
  69. S. G. Gibbard, I. de Pater, B. A. Macintosh, H. G. Roe, C. E. Max, E. F. Young, and C. P. McKay, "Titan's 2μm surface albedo and haze optical depth in 1996-2004: Titan: Pre-Cassini view," Geophys. Res. Lett. 31, L17S02 (2004). [CrossRef]
  70. A. Coustenis, E. Gendron, O. Lai, J.-P. Véran, J. Woillez, M. Combes, L. Vapillon, T. Fusco, L. Mugnier, and P. Rannou, "Images of Titan at 1.3 and 1.6μm with adaptive optics at the CFHT," Icarus 154, 501-515 (2001). [CrossRef]
  71. I. de Pater, M. Ádámkovics, A. H. Bouchez, M. E. Brown, S. G. Gibbard, F. Marchis, H. G. Roe, E. Schaller, and E. Young, "Titan imagery with Keck adaptive optics during and after probe entry," Geophys. Res. Lett. 111, E07S05.
  72. L. A. Sromovsky, J. R. Spencer, K. H. Baines, and P. M. Fry, "Ground-based observations of cloud features on Uranus," Icarus 146, 307-311 (2000). [CrossRef]
  73. H. B. Hammel, I. de Pater, S. G. Gibbard, G. W. Lockwood, and K. Rages, "New cloud activity on Uranus in 2004: first detection of a southern feature at 2.2μm," Icarus 175, 284-288 (2005). [CrossRef]
  74. P. Descamps, F. Marchis, J. Berthier, R. Prangé, T. Fusco, and C. Le Guyader, "First ground-based astrometric observations of Puck," C. R. Phys. 3, 121-128 (2002). [CrossRef]
  75. I. de Pater, S. G. Gibbard, B. A. Macintosh, H. Roe, D. T. Gavel, and C. E. Max, "Keck adaptive optics images of Uranus and its rings," Icarus 160, 359-374 (2002). [CrossRef]
  76. C. M. Waterman-Storer, "Microtubules and microscopes: how the development of light microscopic imaging technologies has contributed to discoveries about microtubule dynamics in living cells," Mol. Biol. Cell 9, 3263-3271 (1998). [PubMed]
  77. G. Chenegros, L. M. Mugnier, F. Lacombe, and M. Glanc, "3D deconvolution of adaptive-optics corrected retinal images," Proc. SPIE 6090, 60900P (2006). [CrossRef]
  78. "The Whole Frog Project," http://froggy.lbl.gov.
  79. K. Nasmyth, "Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis," Annu. Rev. Genet. 35, 673-745 (2001). [CrossRef] [PubMed]
  80. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, "Phase retrieval for high-numerical-aperture optical systems," Opt. Lett. 28, 801-803 (2003). [CrossRef] [PubMed]
  81. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, "Phase-retrieved pupil functions in wide-field fluorescence microscopy," J. Microsc. 216, 32-48 (2004). [CrossRef] [PubMed]
  82. P. J. Huber, Robust Statistics (Wiley-Interscience, 2003).
  83. Q. Ke and T. Kanade, "Robust subspace computation using L1 norm," http://reports-arcliive.adin.cs.crnu.edu/anon/2003/CMU-CS-03-172.pdf.
  84. S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, "Advances and challenges in super-resolution," Int. J. Imaging Syst. Technol. 14, 47-57 (2004). [CrossRef]
  85. M. A. T. Figueiredo and R. D. Nowak, "An EM algorithm for wavelet-based image restoration," IEEE Trans. Image Process. 12, 906-916 (2003). [CrossRef]
  86. R. C. Puetter, "Pixon-based multiresolution image reconstruction and the quantification of picture information content," Int. J. Imaging Syst. Technol. 6, 314-331 (1995). [CrossRef]
  87. B. P. Wakker and U. J. Schwarz, "The Multi-Resolution CLEAN and its application to the short-spacing problem in interferometry," Astron. Astrophys. 200, 312-322 (1988).
  88. D. S. Biggs, C.-L. Wang, T. J. Holmes, and A. Khodjakov, "Subpixel deconvolution of 3D optical microscope imagery," Proc. SPIE 5559, 369-380 (2004). [CrossRef]
  89. M. G. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy." J. Microsc. 198, 82-87 (2000). [CrossRef] [PubMed]
  90. M. G. Gustafsson, "Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution," Proc. Natl. Acad. Sci. U.S.A. 102, 13081-13086 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited