OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 7 — Jul. 16, 2007

Transport-theory-based stochastic image reconstruction of bioluminescent sources

Alexander D. Klose  »View Author Affiliations


JOSA A, Vol. 24, Issue 6, pp. 1601-1608 (2007)
http://dx.doi.org/10.1364/JOSAA.24.001601


View Full Text Article

Enhanced HTML    Acrobat PDF (361 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A stochastic image reconstruction methodology is proposed for solving the highly ill-posed inverse bioluminescent source problem in light-scattering media. The unknown source distribution is expressed in terms of a set of linearly independent source basis functions. The bioluminescent boundary flux originating from each source basis function is computed prior to image reconstruction by solving the equation of radiative transfer. The misfit between the measured and the predicted boundary flux is described by an error function, which is iteratively minimized by stochastically sampling the global parameter space of all basis functions. Selection and alteration mechanisms, which can be guided by evolutionary principles found in nature, lead to new stochastic samples of source distributions for the next iteration cycle. A least-squares-error solution, representing the sought image of the unknown source distribution, is obtained after convergence. Numerical experiments demonstrate the feasibility of reconstructing bioluminescent source distributions in tissuelike media.

© 2007 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(110.6960) Imaging systems : Tomography
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Image Processing

History
Original Manuscript: July 31, 2006
Revised Manuscript: December 4, 2006
Manuscript Accepted: December 5, 2006
Published: May 9, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Alexander D. Klose, "Transport-theory-based stochastic image reconstruction of bioluminescent sources," J. Opt. Soc. Am. A 24, 1601-1608 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-24-6-1601


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. K. Welsh and S. A. Kay, "Bioluminescence imaging in living organisms," Curr. Opin. Biotechnol. 16, 73-78 (2005). [CrossRef] [PubMed]
  2. B. W. Rice, M. D. Cable, and M. B. Nelson, "In vivo imaging of light-emitting probes," J. Biomed. Opt. 6, 432-440 (2001). [CrossRef] [PubMed]
  3. T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, "Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models," Mol. Imaging 3, 9-23 (2004). [CrossRef] [PubMed]
  4. H. Zhao, T. C. Doyle, O. Coquoz, F. Kalish, B. W. Rice, and C. H. Contag, "Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo," J. Biomed. Opt. 10, 041210-01 (2005). [CrossRef]
  5. V. V. Tuchin, Handbook of Optical Biomedical Diagnostics (SPIE, 2002).
  6. A. J. Welch and M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).
  7. W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissue," IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  8. A. M. Hielscher, R. E. Alcouffe, and R. L. Barbour, "Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues," Phys. Med. Biol. 43, 1285-1302 (1998). [CrossRef] [PubMed]
  9. E. D. Aydin, C. R. E. de Oliveira, and A. J. H. Goddard, "A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method," Med. Phys. 29, 2013-2023 (2002). [CrossRef] [PubMed]
  10. A. D. Klose and E. W. Larsen, "Light transport in biological tissue based on the simplified spherical harmonics equations," J. Comput. Phys. 220, 441-470 (2006). [CrossRef]
  11. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005). [CrossRef] [PubMed]
  12. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005). [CrossRef] [PubMed]
  13. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, and K. D. Paulsen, "Spectrally resolved bioluminescence optical tomography," Opt. Lett. 31, 365-367 (2006). [CrossRef] [PubMed]
  14. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13, 6756-6771 (2005). [CrossRef] [PubMed]
  15. G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289-2299 (2004). [CrossRef] [PubMed]
  16. W. Han, W. Cong, and G. Wang, "Mathematical theory and numerical analysis of bioluminescence tomography," Inverse Probl. 22, 1659-1675 (2006). [CrossRef]
  17. E. W. Larsen, "The inverse source problem in radiative transfer," J. Quant. Spectrosc. Radiat. Transf. 15, 1-5 (1975). [CrossRef]
  18. C. E. Siewert, "An inverse source problem in radiative transfer," J. Quant. Spectrosc. Radiat. Transf. 50, 603-609 (1993). [CrossRef]
  19. C. E. Siewert, "A radiative-transfer inverse-source problem for a sphere," J. Quant. Spectrosc. Radiat. Transf. 52, 157-160 (1994). [CrossRef]
  20. B. J. Hoenders, "Existence of invisible nonscattering objects and nonradiating sources," J. Opt. Soc. Am. A 14, 262-266 (1997). [CrossRef]
  21. G. Bal and A. Tamasan, "Inverse source problem in transport equations" (manuscript in preparation).
  22. S. G. Nash, Linear and Nonlinear Programming (McGraw-Hill, 1996).
  23. J. Nocedal and S. J. Wright, Numerical Optimization (Springer, 1999). [CrossRef]
  24. H.-G. Beyer and H.-P. Schwefel, "Evolution strategies," Nat. Comput. 1, 3-52 (2002). [CrossRef]
  25. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, "Equation of state calculations by fast computing machines," J. Chem. Phys. 21, 1087-1092 (1953). [CrossRef]
  26. S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by simulated annealing," Science 220, 671-680 (1983). [CrossRef] [PubMed]
  27. A. D. Klose, V. Ntziachristos, and A.H. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005). [CrossRef]
  28. H.-P. Schwefel, Evolution and Optimum Seeking (Wiley, 1995).
  29. A. H. Hielscher, A. D. Klose, and J. Beuthan, "Evolution strategies for optical tomographic characterization of homogeneous media," Opt. Express 7, 507-518 (2000). [CrossRef] [PubMed]
  30. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, "Refractive index of some mammalian tissues using a fiber optic cladding method," Appl. Opt. 28, 2297-2303 (1989). [CrossRef] [PubMed]
  31. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimotot, "Determination of the refractive-index of highly scattering human tissue by optical coherence tomography," Opt. Lett. 20, 2258-2260 (1995). [CrossRef] [PubMed]
  32. H. Li and S. Xie, "Measurement method of the refractive index of biotissue by internal reflection," Appl. Opt. 35, 1793-1795 (1996). [CrossRef] [PubMed]
  33. J. J. J. Dirckx, L. C. Kuypers, and W. F. Decraemer, "Refractive index of tissue measured," J. Biomed. Opt. 10, 044014 (2005). [CrossRef]
  34. A. D. Kim and A. Ishimaru, "Optical diffusion of continuous-wave, pulsed, and density waves in scattering media and comparisons with radiative transfer," Appl. Opt. 37, 5313-5319 (1998). [CrossRef]
  35. B. Chen, K. Stamnes, and J. J. Stamnes, "Validity of the diffusion approximation in bio-optical imaging," Appl. Opt. 40, 6356-6366 (2001). [CrossRef]
  36. R. Elaloufi, R. Carminati, and J.-J. Greffet, "Time-dependent transport through scattering media: from radiative transfer to diffusion," J. Opt. Soc. Am. A 4, S103-S108 (2002).
  37. A. D. Klose, V. Ntziachristos, and A. H. Hielscher, "In vivo fluorescence molecular imaging with a radiative transfer model," Mol. Imaging 3, 230 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited