OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 8 — Aug. 10, 2007

Speckle reduction in optical coherence tomography images using digital filtering

Aydogan Ozcan, Alberto Bilenca, Adrien E. Desjardins, Brett E. Bouma, and Guillermo J. Tearney  »View Author Affiliations


JOSA A, Vol. 24, Issue 7, pp. 1901-1910 (2007)
http://dx.doi.org/10.1364/JOSAA.24.001901


View Full Text Article

Enhanced HTML    Acrobat PDF (1779 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Speckle noise is a ubiquitous artifact that limits the interpretation of optical coherence tomography images. Here we apply various speckle-reduction digital filters to optical coherence tomography images and compare their performance. Our results indicate that shift-invariant, nonorthogonal wavelet-transform-based filters together with enhanced Lee and adaptive Wiener filters can significantly reduce speckle and increase the signal-to-noise ratio, while preserving strong edges. The speckle reduction capabilities of these filters are also compared with speckle reduction from incoherent angular compounding. Our results suggest that by using these digital filters, the number of individual angles required to attain a certain level of speckle reduction can be decreased.

© 2007 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(110.4500) Imaging systems : Optical coherence tomography

ToC Category:
Imaging Systems

History
Original Manuscript: November 1, 2006
Revised Manuscript: January 8, 2007
Manuscript Accepted: January 29, 2007
Published: June 13, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Aydogan Ozcan, Alberto Bilenca, Adrien E. Desjardins, Brett E. Bouma, and Guillermo J. Tearney, "Speckle reduction in optical coherence tomography images using digital filtering," J. Opt. Soc. Am. A 24, 1901-1910 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-24-7-1901


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995). [CrossRef] [PubMed]
  3. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  4. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997). [CrossRef] [PubMed]
  5. J. M. Schmitt, "Array detection for speckle reduction in optical coherence microscopy," Phys. Med. Biol. 42, 1427-1439 (1997). [CrossRef] [PubMed]
  6. K. M. Yung, S. L. Lee, and J. M. Schmitt, "Phase-domain processing of optical coherence tomography images," J. Biomed. Opt. 4, 125-136 (1999). [CrossRef]
  7. T. Asakura, International Trends in Optics and Photonics ICO IV (Springer-Verlag, 1999), pp. 359-389.
  8. M. Bashkansky and J. Reintjes, "Statistics and reduction of speckle in optical coherence tomography," Opt. Lett. 25, 545-547 (2000). [CrossRef]
  9. J. Rogowska and M. E. Brezinski, "Evaluation of adaptive speckle suppression filter for coronary optical coherence tomography imaging," IEEE Trans. Med. Imaging 19, 1261-1266 (2000). [CrossRef]
  10. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003). [CrossRef] [PubMed]
  11. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). [CrossRef] [PubMed]
  12. D. C. Adler, T. H. Ko, and J. G. Fujimoto, "Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter," Opt. Lett. 29, 2878-2880 (2004). [CrossRef]
  13. D. L. Marks, T. S. Ralston, and S. A. Boppart, "Speckle reduction by I-divergence regularization in optical coherence tomography," J. Opt. Soc. Am. A 22, 2366-2371 (2005). [CrossRef]
  14. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging," Opt. Express 14, 4736-4745 (2006). [CrossRef] [PubMed]
  15. J. S. Lee, "Speckle analysis and smoothing of synthetic aperture radar images," Comput. Graph. Image Process. 17, 24-32 (1981). [CrossRef]
  16. D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, "Adaptive noise smoothing filter for images with signal-dependent noise," IEEE Trans. Pattern Anal. Mach. Intell. 7, 165-177 (1985). [CrossRef] [PubMed]
  17. A. Lopes, R. Touzi, and E. Nesby, "Adaptive speckle filter and scene heterogeneity," IEEE Trans. Geosci. Remote Sens. 28, 992-1000 (1990). [CrossRef]
  18. J. L. Starck, F. Murtagh, and A. Bijaoui, Image Processing and Data Analysis: The Multiscale Approach (Cambridge U. Press, 1998). [CrossRef]
  19. S. I. Fraser and A. R. Allen, "A speckle reduction algorithm using the à trous wavelet transform," in Proceedings of the IASTED International Conference on Visualization, Imaging and Image Processing, (ACTA, 2001), pp. 313-318. [PubMed]
  20. A. Nieminen, P. Heinonen, and Y. Neuvo, "A new class of detail-preserving filters for image-processing," IEEE Trans. Pattern Anal. Mach. Intell. 9, 74-90 (1987). [CrossRef] [PubMed]
  21. D. Harwood, M. Subbarao, H. Hakalahti, and L. Davis, "A new class of edge-preserving smoothing filters," Pattern Recogn. Lett. 6, 155-162 (1987). [CrossRef]
  22. M. Kuwahara, K. Hachimura, S. Eiho, and M. Kinoshita, Digital Processing of Biomedical Images (Plenum, 1976), pp. 187-203.
  23. S. J. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, 1990).
  24. D. Sauter and L. Parson, "Spatial filtering for speckle reduction, contrast enhancement, and texture analysis of GLORIA images," IEEE J. Ocean. Eng. 19, 563-576 (1994). [CrossRef]
  25. E. Kofidis, S. Theodoridis, C. Kotropoulos, and I. Pitas, "Nonlinear adaptive filters for speckle suppression in ultrasonic images," Signal Process. 52, 357-372 (1996). [CrossRef]
  26. V. V. Zaitsev and D. V. Troshkin, "Experimental study of speckle-noise filtering algorithms for radar images," Earth Observation and Remote Sensing 12, 831-846 (1995).
  27. A. A. Vassiliou, M. Bouluanne, and J. A. R. Blais, "On the application of averaging median filters in remote sensing," IEEE Trans. Geosci. Remote Sens. 26, 832-838 (1988). [CrossRef]
  28. J. Salo, Y. Neuvo, and V. Hameenaho, "Improving TV picture quality with linear-median type operations," IEEE Trans. Consum. Electron. 34, 373-379 (1988). [CrossRef]
  29. G. Harauz and A. Fonglochovsky, "Automatic selection of macromolecules from electron micrographs by component labeling and symbolic processing," Ultramicroscopy 31, 333-344 (1989). [CrossRef] [PubMed]
  30. A. C. Kokaram, N. Persad, J. Lasenby, W. J. Fitzgerald, A. McKinnan, and M. Welland, "Restoration of images from the scanning-tunneling microscope," Appl. Opt. 34, 5121-5132 (1995). [CrossRef] [PubMed]
  31. S. D. Bohmig, H. Beilschmidt, and B. M. Reichl, "Noise suppression in scanning Auger images—Comparison of various digital filters," Fresenius' J. Anal. Chem. 346, 196-199 (1993). [CrossRef]
  32. V. Chandran and S. Elgar, "Detection of sea mines in sonar imagery using higher-order spectral features," in Proc. SPIE 3710, 578-587 (1999). [CrossRef]
  33. X. H. Wang, R. S. H. Istepanian, and Y. H. Song, "Microarray image enhancement by denoising using stationary wavelet transform," IEEE Trans. Nanobiosci. 2, 184-189 (2003). [CrossRef]
  34. J. Wen, H. Lu, T. Li, and Z. Liang, "Analytical solution to 3D SPECT reconstruction with non-uniform attenuation, scatter, and spatially variant resolution variation for variable focal-length fan-beam collimators," Proc. SPIE 5032, 1858-1867 (2003). [CrossRef]
  35. Y. Funama, Y. Noguchi, and M. Shimamura, "Reduction of artifacts in degraded CT image by adaptive Wiener filter," Jpn. J. Med. Electron. Biol. Eng. 40, 1-6 (2002).
  36. F. V. Wegner, M. Both, and R. H. A. Fink, "Automated detection of elementary calcium release events using the à trous wavelet transform," Biophys. J. 90, 2151-2163 (2006). [CrossRef]
  37. J. L. Starck and F. Murtagh, "Automatic noise estimation from the multiresolution support," Publ. Astron. Soc. Pac. 110, 193-199 (1998). [CrossRef]
  38. G. Stenborg and P. J. Cobelli, "A wavelet packets equalization technique to reveal the multiple spatial-scale nature of coronal structures," Astron. Astrophys. 398, 1185-1193 (2003). [CrossRef]
  39. J. C. Olivo-Marin, "Extraction of spots in biological images using multiscale products," Pattern Recogn. 35, 1989-1996 (2002). [CrossRef]
  40. L. Muresan, B. Heise, and E. P. Klement, "Tracking fluorescent spots in wide-field microscopy images," Proc. SPIE 6070, 203-212 (2006).
  41. J. Cornelis, J. De Becker, M. Bister, C. Vanhove, G. Demonceau, and A. Cornelis, "Techniques for cardiac image segmentation," in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1992), Vol. 14, pp. 1906-1908.
  42. F. J. Humphreys, P. S. Bate, and P. J. Hurley, "Orientation averaging of electron backscattered diffraction data," J. Microsc. 201, 50-58 (2001). [CrossRef] [PubMed]
  43. K. Minato, Y.-N. Tang, G. W. Bennett, and A. B. Brill, "Automatic contour detection using a fixed-point Hachimura-Kuwahara filter for SPECT attenuation correction," IEEE Trans. Med. Imaging MI-6, 126-133 (1987). [CrossRef]
  44. M. van Staalduinen, J. C. A. van der Lubbe, and E. Backer, "Circular analysis-based line detection filters for watermark extraction in x-ray images of etchings," in Proceedings of the Tenth Annual Conference of the Advanced School for Computing and Imaging (ASCI, 2004), pp. 305-310.
  45. D. de Ridder, R. P. W. Duin, P. W. Verbeek, and L. J. van Vliet, "The applicability of neural networks to non-linear image processing," Pattern Anal. Appl. 2, 111-128 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited