OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 9 — Sep. 26, 2007

Wide-field schematic eye models with gradient-index lens

Alexander V. Goncharov and Chris Dainty  »View Author Affiliations


JOSA A, Vol. 24, Issue 8, pp. 2157-2174 (2007)
http://dx.doi.org/10.1364/JOSAA.24.002157


View Full Text Article

Enhanced HTML    Acrobat PDF (1026 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a wide-field schematic eye model, which provides a more realistic description of the optical system of the eye in relation to its anatomical structure. The wide-field model incorporates a gradient-index (GRIN) lens, which enables it to fulfill properties of two well-known schematic eye models, namely, Navarro’s model for off-axis aberrations and Thibos’s chromatic on-axis model (the Indiana eye). These two models are based on extensive experimental data, which makes the derived wide-field eye model also consistent with that data. A mathematical method to construct a GRIN lens with its iso-indicial contours following the optical surfaces of given asphericity is presented. The efficiency of the method is demonstrated with three variants related to different age groups. The role of the GRIN structure in relation to the lens paradox is analyzed. The wide-field model with a GRIN lens can be used as a starting design for the eye inverse problem, i.e., reconstructing the optical structure of the eye from off-axis wavefront measurements. Anatomically more accurate age-dependent optical models of the eye could ultimately help an optical designer to improve wide-field retinal imaging.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(080.3620) Geometric optics : Lens system design
(110.2760) Imaging systems : Gradient-index lenses
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: October 20, 2006
Revised Manuscript: February 18, 2007
Manuscript Accepted: March 18, 2007
Published: July 11, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Alexander V. Goncharov and Chris Dainty, "Wide-field schematic eye models with gradient-index lens," J. Opt. Soc. Am. A 24, 2157-2174 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-24-8-2157


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Gullstrand, "Appendix II," in Handbuch der Physiologischen Optik, 3rd ed. 1909, J.P.Southall trans., ed. (Optical Society of America, 1924), Vol. 1, pp. 351-352.
  2. Y. Le Grand and S. G. El Hage, Physiological Optics (Springer-Verlag, 1980).
  3. W. Lotmar, "Theoretical eye model with aspherics," J. Opt. Soc. Am. 61, 1522-1529 (1971). [CrossRef]
  4. O. Pomerantzeff, M. Pankratov, G.-J. Wang, and P. Dufault, "Wide-angle optical model of the eye," Am. J. Optom. Physiol. Opt. 61, 166-176 (1984). [PubMed]
  5. I. H. Al-Ahdali and M. A. El-Messiery, "Examination of the effect of the fibrous structure of a lens on the optical characteristics of the human eye: a computer-simulated model," Appl. Opt. 25, 5738-5745 (1995). [CrossRef]
  6. A. Popiolek-Masajada, "Numerical study of the influence of the shell structure of the crystalline lens on the refractive properties of the human eye," Ophthalmic Physiol. Opt. 19, 41-48 (1999). [CrossRef]
  7. Y.-J. Liu, Z.-Q. Wang, L.-P. Song, and G.-G. Mu, "An anatomically accurate eye model with a shell-structure lens," Optik (Stuttgart) 116, 241-246 (2005). [CrossRef]
  8. J. W. Blaker, "Toward an adaptive model of the human eye," J. Opt. Soc. Am. 70, 220-223 (1980). [CrossRef]
  9. G. Smith, B. K. Pierscionek, and D. A. Atchison, "The optical modelling of the human lens," Ophthalmic Physiol. Opt. 11, 359-369 (1991). [CrossRef]
  10. H.-L. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997). [CrossRef]
  11. G. Smith, "The optical properties of the crystalline lens and their significance," Clin. Exp. Optom. 86, 3-18 (2003). [CrossRef]
  12. D. A. Atchison and G. Smith, "Continuous gradient-index and shell models of the human lens," Vision Res. 35, 2529-2538 (1995). [CrossRef]
  13. A. C. Kooijman, "Light distribution on the retina of a wide-angle theoretical eye," J. Opt. Soc. Am. 73, 1544-1550 (1983). [CrossRef]
  14. R. Navarro, J. Santamaria, and J. Bescos, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273-1281 (1985). [CrossRef]
  15. M. J. Howcroft and J. A. Parker, "Aspheric curvatures for the human lens," Vision Res. 17, 1217-1223 (1977). [CrossRef] [PubMed]
  16. I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of a wide-angle schematic eye model," J. Opt. Soc. Am. A 16, 1881-1891 (1999). [CrossRef]
  17. L. N. Thibos, M. Ye, X. X. Zhang, and A. Bradley, "The chromatic eye: a new model of ocular chromatic aberration," Appl. Opt. 31, 3594-3600 (1992). [CrossRef] [PubMed]
  18. M. Ye, X. X. Zhang, L. N. Thibos, and A. Bradley, "A new single-surface model eye that accurately predicts chromatic and spherical aberrations of the human eye," Invest. Ophthalmol. Visual Sci. 34, 777 (1993).
  19. R. Navarro, E. Moreno, and C. Dorronsoro, "Monochromatic aberrations and point-spread functions of the human eye across the visual field," J. Opt. Soc. Am. A 15, 2522-2529 (1998). [CrossRef]
  20. D. A. Atchison and D. H. Scott, "Monochromatic aberrations of human eyes in the horizontal visual field," J. Opt. Soc. Am. A 19, 2180-2184 (1998). [CrossRef]
  21. D. A. Atchison, "Anterior corneal and internal contributions to peripheral aberrations of human eyes," J. Opt. Soc. Am. A 21, 335-359 (2004). [CrossRef]
  22. R. Navarro and M. A. Losada, "Aberrations and relative efficiency of ray pencils in the living human eye," Optom. Vision Sci. 74, 540-547 (1997). [CrossRef]
  23. E. Moreno-Barriuso and R. Navarro, "Laser ray tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye," J. Opt. Soc. Am. A 17, 974-985 (2000). [CrossRef]
  24. J. Liang, B. Grimm, S. Goez, and J. F. Bille, "Objective measurements of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994). [CrossRef]
  25. J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997). [CrossRef]
  26. T. Salmon, L. N. Thibos, and A. Bradley, "Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor," J. Opt. Soc. Am. A 15, 2457-2465 (1998). [CrossRef]
  27. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, "Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI)," Vision Res. 45, 2352-2366 (2005). [CrossRef] [PubMed]
  28. M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. J. M. Vrensen, "Changes in the internal structure of the human crystalline lens with age and accommodation," Vision Res. 43, 2363-2375 (2003). [CrossRef] [PubMed]
  29. B. K. Pierscionek, "Refractive index contours in the human lens," Exp. Eye Res. 64, 887-893 (1997). [CrossRef] [PubMed]
  30. D. Siedlecki, H. Kasprzak, and B. K. Pierscionek, "Schematic eye with a gradient-index lens and aspheric surfaces," Opt. Lett. 29, 1197-1199 (2004). [CrossRef] [PubMed]
  31. W. S. Jagger and P. J. Stands, "A wide-angle gradient index optical model of the crystalline lens and eye of the rainbow trout," Vision Res. 36, 2623-2639 (1996). [CrossRef] [PubMed]
  32. W. S. Jagger and P. J. Stands, "A wide-angle gradient index optical model of the crystalline lens and eye of the octopus," Vision Res. 39, 2841-2852 (1999). [CrossRef] [PubMed]
  33. S. Nakao, T. Ono, R. Nagata, and K. Iwata, "Model of refractive indices in the human crystalline lens," Jpn. J. Clin. Ophthalmol. 23, 903-906 (1969).
  34. B. K. Pierscionek, D. Y. C. Chan, J. P. Ennis, G. Smith, and R. C. Augusteyn, "Nondestructive method of constructing three-dimensional gradient index models for crystalline lenses: 1 theory and experiment," Am. J. Optom. Physiol. Opt. 65, 481-491 (1988). [PubMed]
  35. B. K. Pierscionek and D. Y. C. Chan, "Refractive index gradient of human lenses," Optom. Vision Sci. 66, 822-829 (1989). [CrossRef]
  36. D. Y. C. Chan, J. P. Ennis, B. K. Pierscionek, and G. Smith, "Determination and modeling of 3-D gradient refractive indices in crystaline lenses," Appl. Opt. 27, 926-931 (1988). [CrossRef] [PubMed]
  37. P. P. Fagerholm, B. T. Philipson, and B. Lindstrom, "Normal human lens, the distribution of protein," Exp. Eye Res. 33, 615-620 (1981). [CrossRef] [PubMed]
  38. B. K. Pierscionek, "Variations in refractive index and absorbance of 679 nm light with age and cataract formation in human lenses," Exp. Eye Res. 60, 407-414 (1995). [CrossRef] [PubMed]
  39. B. K. Pierscionek, "Surface refractive index of the eye lens determined with an optic fiber sensor," J. Opt. Soc. Am. A 10, 1867-1871 (1993). [CrossRef]
  40. B. A. Moffat, D. A. Atchison, and J. M. Pope, "Aged-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance microimaging in vitro," Vision Res. 42, 1683-1693 (2002). [CrossRef] [PubMed]
  41. G. Smith and D. A. Atchison, "Equivalent power of the crystalline lens of the human eye: comparison of methods of calculation," J. Opt. Soc. Am. A 14, 2537-2546 (1997). [CrossRef]
  42. G. Smith and D. A. Atchison, "The gradient index and spherical aberration of the lens of the human eye," Ophthalmic Physiol. Opt. 21, 317-326 (2001). [CrossRef] [PubMed]
  43. P. J. Sands, "Third-order aberrations of inhomogeneous lens," J. Opt. Soc. Am. 60, 1436-1443 (1970). [CrossRef]
  44. Y. Huang and D. T. Moore, "Human eye modeling using a single equation of gradient index crystalline lens for relaxed and accommodated states," presented at the International Optical Design Conference, Vancouver, British Columbia, Canada, June 4-8, 2006, paper MDI.
  45. M. Koomen, R. Tousey, and R. Scolnik, "The spherical aberration of the eye," J. Opt. Soc. Am. 39, 370-376 (1949). [CrossRef] [PubMed]
  46. A. Ivanoff, "About the spherical aberration of the eye," J. Opt. Soc. Am. 46, 901-903 (1956). [CrossRef] [PubMed]
  47. T. Jenkins, "Aberrations of the eye and their effects on vision: part 1," Br. J. Physiol. Opt. 20, 59-91 (1963). [PubMed]
  48. M. Millodot and J. Sivak, "Contribution of the cornea and lens to the spherical aberration of the eye," Vision Res. 19, 685-687 (1979). [CrossRef] [PubMed]
  49. H.-L. Liou and N. A. Brennan, "The prediction of spherical aberration with schematic eyes," Ophthalmic Physiol. Opt. 16, 348-354 (1996). [CrossRef] [PubMed]
  50. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "Spherical aberration of the reduced schematic eye with elliptical refracting surface," Optom. Vision Sci. 74, 548-556 (1997). [CrossRef]
  51. R. L. Woods, A. Bradley, and D. A. Atchison, "Monocular diplopia caused by ocular aberrations and hyperopic defocus," Vision Res. 36, 3597-3606 (1996). [CrossRef] [PubMed]
  52. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001). [CrossRef]
  53. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variations of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002). [CrossRef]
  54. J. C. He, J. Gwiazda, F. Thorn, and R. Held, "Wave-front aberrations in the anterior corneal surface and the whole eye," J. Opt. Soc. Am. A 20, 1155-1163 (2003). [CrossRef]
  55. G. Smith, M. J. Cox, R. Calver, and L. F. Garner, "The spherical aberration of the crystalline lens of the human eye," Vision Res. 41, 235-243 (2001). [CrossRef] [PubMed]
  56. R. I. Calver, M. J. Cox, and D. B. Elliott, "Effect of aging on the monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 16, 2069-2078 (1999). [CrossRef]
  57. P. Artal, E. Berrio, A Guirao, and P. Piers, "Contribution of the cornea and internal surfaces to the change of ocular aberrations," J. Opt. Soc. Am. A 19, 137-143 (2002). [CrossRef]
  58. S. Amano, Y. Amano, S. Yamagami, T. Miyai, K. Miyata, T. Samejima, and T. Oshika, "Age-related changes in corneal and ocular higher-order wavefront aberrations," Am. J. Ophthalmol. 137, 988-992 (2004). [CrossRef] [PubMed]
  59. J. L. Alió, P. Schimchak, H. P. Negri, and R. Montés-Micó, "Crystalline lens optical dysfunction through aging," Ophthalmology 112, 2022-2029 (2005). [CrossRef] [PubMed]
  60. A. K. C. Lam and W. A. Douthwaite, "The aging effect on the central posterior corneal radius," Ophthalmic Physiol. Opt. 20, 63-69 (2000). [CrossRef]
  61. C. Edmund, "Posterior corneal curvature and its influence on corneal dioptric power," Acta Ophthalmol. 72, 715-720 (1994).
  62. A. Guirao, M. Redondo, and P. Artal, "Optical aberrations of the human cornea as a function of age," J. Opt. Soc. Am. A 17, 1697-1702 (2000). [CrossRef]
  63. A. Guirao and P. Artal, "Corneal wave aberration from videokeratography: accuracy and limitations of the procedure," J. Opt. Soc. Am. A 17, 955-965 (2000). [CrossRef]
  64. M. Sheridan and W. A. Douthwaite, "Meridional variations of corneal shape," Ophthalmic Physiol. Opt. 9, 235-238 (1989). [CrossRef] [PubMed]
  65. S. Aoshima, T. Nagata, and A. Minakata, "Optical characteristics of oblique incident rays in pseudophakic eyes," J. Cataract Refractive Surg. 30, 471-477 (2004). [CrossRef]
  66. M. Guillon, P. M. Lydon, and C. Wilson, "Corneal topography: a clinical model," Ophthalmic Physiol. Opt. 6, 47-56 (1986). [CrossRef] [PubMed]
  67. M. Dubbelman, H. A. Weeber, R. G. L. van der Heijde, and H. J. Volker-Dieben, "Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography," Acta Ophthalmol. Scand. 80, 379-383 (2002). [CrossRef] [PubMed]
  68. P. Artal and A. Guirao, "Contributions of the cornea and the lens to the aberrations of the human eye," Opt. Lett. 23, 1713-1715 (1998). [CrossRef]
  69. J. C. He, J. Gwiazda, F. Thorn, R. Held, and W. Huang, "Change in corneal shape and corneal wave-front aberrations with accommodation," J. Vision 3, 456-463 (2003). [CrossRef]
  70. L. Wang, E. Dai, D. D. Koch, and A. Nathoo, "Optical aberrations of the human anterior cornea," J. Cataract Refractive Surg. 29, 1514-1521 (2003). [CrossRef]
  71. J. E. Kelly, T. Mihashi, and H. C. Howland, "Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye," J. Vision 4, 262-271 (2004). [CrossRef]
  72. R. Navarro, L. González, and J. L. Hernández, "Optics of the average normal cornea from general and canonical representations of its surface topography," J. Opt. Soc. Am. A 23, 219-232 (2006). [CrossRef]
  73. A. Lleó, A. Marcos, M. Calatayud, L. Alonso, S. M. Rahhal, and J. A. Sanchis-Gimeno, "The relationship between central corneal thickness and Goldmann applanation tonometry," Clin. Exp. Optom. 86, 104-108 (2003). [CrossRef] [PubMed]
  74. A. K. C. Lam and J. Chan, "Corneal thickness at different reference points from Orbscan II system," Clin. Exp. Optom. 86, 230-234 (2003). [CrossRef] [PubMed]
  75. C. A. Cook and J. F. Koretz, "Acquisition of the curves of the human crystalline lens from slit lamp images: an application of the Hough transform," Appl. Opt. 30, 2088-2099 (1991). [CrossRef] [PubMed]
  76. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, "The thickness of the aging human lens obtained from corrected Scheimpflug images," Optom. Vision Sci. 78, 411-416 (2001). [CrossRef]
  77. J. F. Koretz, S. Strenk, L. M. Strenk, and J. L. Semmlow, "Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study," J. Opt. Soc. Am. A 21, 346-354 (2004). [CrossRef]
  78. M. Dubbelman and G. L. Van der Heijde, "The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox," Vision Res. 41, 1867-1877 (2001). [CrossRef] [PubMed]
  79. J. F. Koretz, C. A. Cook, and P. L. Kaufman, "Aging of the human lens: changes in lens shape at zero-diopter accommodation," J. Opt. Soc. Am. A 18, 265-272 (2001). [CrossRef]
  80. N. Brown, "The change in lens curvature with age," Exp. Eye Res. 19, 175-183 (1974). [CrossRef]
  81. S. Stenström, "Investigation of the variation and the correlation of the optical elements of human eye," Am. J. Optom. Arch. Am. Acad. Optom. 25, 340-350 (1948).
  82. C. S. Yu, D. Kao, and C. T. Chang, "Measurements of the length of the visual axis by ultrasonography in 1789 eyes," Chin. J. Ophthal. 15, 45-47 (1979).
  83. T. Grosvenor, "Changes in spherical refraction during the adult years," in Refractive Anomalies. Research and Clinical Applications, T.Grosvenor and M.C.Flom, eds. (Butterworth-Heinemann, 1991), pp. 131-145.
  84. H. Saunders, "Age-dependence of human refractive errors," Ophthalmic Physiol. Opt. 1, 159-174 (1981). [CrossRef]
  85. H. Saunders, "A longitudinal study of the age dependence of human ocular refraction. 1. Age-dependent changes in the equivalent sphere," Ophthalmic Physiol. Opt. 6, 343-344 (1986). [CrossRef]
  86. J. L. Rayces and M. Rosete-Aguilar, "Optical design procedure for duplicating wavefront errors of an optical instrument," Opt. Eng. (Bellingham) 39, 1768-1775 (2000). [CrossRef]
  87. R. Navarro, L. González, and J. L. Hernández-Matamoros, "On the prediction of optical aberrations by personalized eye models," Optom. Vision Sci. 83, 371-381 (2006). [CrossRef]
  88. J. F. Koretz, C. A. Cook, and J. R. Kuszak, "The zones of discontinuity in the human lens: development and distribution with age," Vision Res. 34, 2955-2962 (1994). [CrossRef] [PubMed]
  89. N. Brown, "The change in shape and internal form of the lens of the eye on accommodation," Exp. Eye Res. 15, 441-459 (1973). [CrossRef] [PubMed]
  90. T. Grosvenor, "Reduction in axial length with age: an emmetropizing mechanism for the adult eye?" Am. J. Optom. Physiol. Opt. 64, 657-663 (1987). [PubMed]
  91. C. S. Ooi and T. Grosvenor, "Mechanisms of emmetropization in the aging eye," Optom. Vision Sci. 72, 60-66 (1995). [CrossRef]
  92. J. F. Koretz and G. H. Handelman, "The lens paradox and image formation in accommodating human eyes," Top. Aging Res. Eur. 6, 57-64 (1986).
  93. B. K. Pierscionek, "Presbyopia--effect of refractive index," Clin. Exp. Optom. 73, 23-30 (1990). [CrossRef]
  94. G. Smith, D. A. Atchison, and B. K. Pierscionek, "Modeling the power of the aging human eye," J. Opt. Soc. Am. A 9, 2111-2117 (1992). [CrossRef] [PubMed]
  95. G. Smith and B. K. Pierscionek, "The optical structure of the lens and its contribution to the refractive status of the eye," Ophthalmic Physiol. Opt. 18, 21-29 (1998). [CrossRef] [PubMed]
  96. R. P. Hemenger, L. F. Garner, and C. S. Ooi, "Changes with age of the refractive index gradient of the human ocular lens," Invest. Ophthalmol. Visual Sci. 36, 703-707 (1995).
  97. L. F. Garner, C. S. Ooi, and G. Smith, "Refractive index of the crystalline lens in young and aged eyes," Clin. Exp. Optom. 81, 145-150 (1998). [CrossRef]
  98. B. A. Moffat, D. A. Atchison, and J. M. Pope, "Explanation of the lens paradox," Optom. Vision Sci. 79, 148-150 (2002). [CrossRef]
  99. J. F. Koretz and C. A. Cook, "Aging of the optics of the human eye: lens refraction models and principal plane locations," Optom. Vision Sci. 78, 396-404 (2001). [CrossRef]
  100. M. V. Perez, C. Bao, M. T. Flores-Arias, M. A. Rama, and C. Gomez-Reino, "Description of gradient-index crystalline lens by a first-order optical system," J. Opt. A, Pure Appl. Opt. 7, 103-110 (2005). [CrossRef]
  101. A. Glasser and M. C. W. Campbell, "Presbyopia and the optical changes in the human crystalline lens with age," Vision Res. 38, 209-229 (1998). [CrossRef] [PubMed]
  102. A. V. Goncharov and C. Dainty are currently preparing a manuscript to be called "Aberrations of chromatic wide-field schematic eye model with a GRIN lens." (alexander.goncharov@nuigalway.ie)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited