OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 9 — Sep. 26, 2007

Adaptive model of the gradient index of the human lens. I. Formulation and model of aging ex vivo lenses

Rafael Navarro, Fernando Palos, and Luis González  »View Author Affiliations


JOSA A, Vol. 24, Issue 8, pp. 2175-2185 (2007)
http://dx.doi.org/10.1364/JOSAA.24.002175


View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple, parametric adaptive model of the refractive index distribution of the ex vivo crystalline lens is presented. It assumes conicoid (or nonrevolution quadric in 3D) iso-indical surfaces, concentric with the external surfaces of the lens. The model uses a minimum number of internal structural parameters, while the shape of the iso-indical surfaces adapts automatically to the external geometry. In this way, it is able to adapt and fit individual distributions as well as adapt to the changes of the lens shape and structure with age and accommodation. The model is fit to experimental data for individual eyes spanning ages 7 to 82 years, where for each eye the crystalline lens dimensions and iso-indical index data are known. The analysis demonstrates that only one age-dependent structural parameter is needed to replicate the internal iso-indical index structure, given age-dependent models for the external surfaces. An age-dependent-parameter global model is derived and is shown to predict age-dependent changes in the ex vivo lens power and longitudinal spherical aberration with age.

© 2007 Optical Society of America

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: September 13, 2006
Revised Manuscript: March 7, 2007
Manuscript Accepted: March 8, 2007
Published: July 11, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Rafael Navarro, Fernando Palos, and Luis González, "Adaptive model of the gradient index of the human lens. I. Formulation and model of aging ex vivo lenses," J. Opt. Soc. Am. A 24, 2175-2185 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-24-8-2175


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Gullstrand, "Appendix II" in Helmholtz's Handbuch der Physiologischen Optik, 3rd ed. English translation edited by J.P.Southall (Optical Society of America, 1962) Vol. 1, pp. 351-352.
  2. M. C. W. Campbell, "Measurement of refractive index in an intact crystalline lens," Vision Res. 24, 409-415 (1984). [CrossRef] [PubMed]
  3. B. K. Pierscionek and D. Y. C. Chan, "Refractive index gradient of human lenses," Optom. Vision Sci. 66, 822-829 (1989). [CrossRef]
  4. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, "Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI)," Vision Res. 45, 2352-2366 (2005). [CrossRef] [PubMed]
  5. D. Vazquez, E. Acosta, G. Smith, and L. Garner, "Tomographic method for measurement of the gradient refractive index of the crystalline lens. II. The rotationally symmetrical lens," J. Opt. Soc. Am. A 23, 2551-2565 (2006). [CrossRef]
  6. S. Nakao, T. Ono, R. Nagata, and K. Iwata, "Model of refractive indices in the human crystalline lens," Jpn. J. Clin. Ophthalmol. 23, 903-906 (1969).
  7. G. Smith, B. K. Pierscionek, and D. A. Atchison, "The optical modelling of the human lens," Ophthalmic Physiol. Opt. 11, 359-369 (1991). [CrossRef] [PubMed]
  8. D. A. Atchison and G. Smith, "Continuous gradient index and shell models of the human lens," J. Opt. Soc. Am. A 14, 1684-1695 (1995).
  9. H.-L. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997). [CrossRef]
  10. D. Siedlecki, H. Kasprzak, and B. K. Pierscionek, "Schematic eye with a gradient-index lens and aspheric surfaces," Opt. Lett. 29, 1197-1199 (2004) [CrossRef] [PubMed]
  11. J. W Blaker, "Toward an adaptive model of the human eye," J. Opt. Soc. Am. 70, 220-223 (1980). [CrossRef] [PubMed]
  12. M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. J. M. Vrensen, "Changes in the internal structure of the human crystalline lens with age and accommodation," Vision Res. 43, 2363-2375 (2003). [CrossRef] [PubMed]
  13. G. Smith, D. A. Atchison, and B. K. Pierscionek, "Modeling the power of the aging human eye," J. Opt. Soc. Am. A 9, 2111-2117 (1992). [CrossRef] [PubMed]
  14. R. P. Hemenger, L. F. Garner, and C. S. Ooi, "Change with age of the refractive index gradient of the human ocular lens," Invest. Ophthalmol. Visual Sci. 36, 703-707 (1995).
  15. A. Glasser and M. Campbell, "Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia," Vision Res. 39, 1991-2015 (1999). [CrossRef] [PubMed]
  16. A. Popiolek-Masajada, "Numerical study of the influence of the shell structure of the crystalline lens on the refractive properties of the human eye," Ophthalmic Physiol. Opt. 19, 41-49 (1999). [CrossRef]
  17. N. Brown, "The change in lens curvature with age," Exp. Eye Res. 19, 175-183 (1974). [CrossRef] [PubMed]
  18. G. Smith and D. A. Atchison, "The gradient index and spherical aberration of the lens of the human eye," Ophthalmic Physiol. Opt. 21, 317-326 (2001). [CrossRef] [PubMed]
  19. J. G. Sivak and R. O. Kreuzer, "Spherical aberration of the crystalline lens," Vision Res. 23, 59-70 (1983). [CrossRef] [PubMed]
  20. A. Roorda and A. Glasser, "Wave aberrations of the isolated crystalline lens," J. Vision 4, 250-261 (2004). [CrossRef]
  21. J. F. Koretz, C. A. Cook, and P. L. Kaufman, "Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus," Invest. Ophthalmol. Visual Sci. 38, 569-578 (1997).
  22. J. F. Koretz, C. A. Cook, and P. L. Kaufman, "Aging of the human lens: changes in lens shape at zero-diopter accommodation," J. Opt. Soc. Am. A 18, 265-272 (2001). [CrossRef]
  23. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, "Change in shape of the aging human crystalline lens with accommodation," Vision Res. 45, 117-132 (2004). [CrossRef] [PubMed]
  24. R. Navarro, F. Palos, and L. González, "Adaptive model of the gradient index of the human lens. II. Optics of the accommodating aging lens," (submitted to J. Opt. Soc. Am. A).
  25. H. T. Kasprzak, "New approximation for the whole profile of the human crystalline lens," Ophthalmic Physiol. Opt. 20, 31-43 (2000). [CrossRef] [PubMed]
  26. A. M. Rosen, D B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J.-M. Parel, and R. C. Augusteyn, "In vitro dimensions and curvatures of human lenses," Vision Res. 46, 1002-1009 (2006). [CrossRef]
  27. R. Navarro, L. González, and J. L. Hernández, "Optics of the average normal cornea from general and canonical representations of its surface topography," J. Opt. Soc. Am. A 23, 219-232 (2006). [CrossRef]
  28. Y. Le Grand and S. G. El Hage, Physiological Optics (Springer-Verlag, 1980).
  29. M. J. Howcroft and J. A. Parker, "Aspheric curvatures for the human lens," Vision Res. 17, 1217-1223 (1977). [CrossRef] [PubMed]
  30. R. Navarro, J. Santamaría, and J. Bescós, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273-1281 (1985). [CrossRef] [PubMed]
  31. P. Artal, E. Berrio, A. Guirao, and P. Piers, "Contribution of the cornea and internal surfaces to the change of ocular aberrations with age," J. Opt. Soc. Am. A 19, 137-143 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited