OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 10 — Oct. 31, 2007

Stevens’s brightness law, contrast gain control, and edge integration in achromatic color perception: a unified model

Michael E. Rudd and Dorin Popa  »View Author Affiliations


JOSA A, Vol. 24, Issue 9, pp. 2766-2782 (2007)
http://dx.doi.org/10.1364/JOSAA.24.002766


View Full Text Article

Enhanced HTML    Acrobat PDF (496 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The brightness of an isolated test patch is related to its luminance by a power law having an exponent of about 1 3 , a result known as Stevens’s brightness law. The brightness law exponent characterizes the rate at which brightness grows with luminance and can thus be thought of as an “exponential” gain factor. We studied changes in this gain factor for incremental and decremental test squares as a function of the size of a surrounding frame of homogeneous luminance. For incremental targets, the gain decreased as an approximately linear function of the frame width. For decremental targets, the gain increased as an approximately linear function of the frame width. We modeled the brightness of the frame-embedded target with a quantitative theory based on the assumption that the target brightness is determined by the sum of achromatic color induction signals originating from the inner and outer edges of the surround, a theory that has previously been used to account for the results of several other brightness matching experiments. To account for the frame-width-dependent gain changes observed in the present study, we elaborate this edge integration theory by proposing the existence of a cortical contrast gain control mechanism by which the gains applied to neural edge detectors are influenced by the responses of other edge detectors responding to the nearby edges.

© 2007 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.5020) Vision, color, and visual optics : Perception psychology
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7310) Vision, color, and visual optics : Vision

ToC Category:
Vision, color, and visual optics

History
Original Manuscript: August 17, 2006
Revised Manuscript: April 16, 2007
Manuscript Accepted: April 25, 2007
Published: August 7, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Michael E. Rudd and Dorin Popa, "Stevens's brightness law, contrast gain control, and edge integration in achromatic color perception: a unified model," J. Opt. Soc. Am. A 24, 2766-2782 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-24-9-2766


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Shapley and C. Enroth-Cugell, "Visual adaptation and retinal gain controls," in Progress in Retinal Research 3, N.Osborne and G.Chader, eds. (Pergamon, 1984). [CrossRef]
  2. J. Walraven, C. Enroth-Cugell, D. C. Hood, D. I. A. MacLeod, and J. L. Schapf, "The control of visual sensitivity," in Visual Perception: The Neurophysiological Foundations, L.Spillmann and J.S.Werner, eds. (Academic, 1990).
  3. S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, and M. Meister, "Adaptation of retinal processing to image contrast and spatial scale," Nature 386, 69-73 (1997). [CrossRef] [PubMed]
  4. M. Meister and M. J. Berry, "The neural code of the retina," Neuron 22, 435-450 (1999). [CrossRef] [PubMed]
  5. N. Brenner, W. Bialek, and R. de Ruyter van Steveninck, "Adaptive rescaling maximizes information transmission," Neuron 26, 695-702 (2000). [CrossRef] [PubMed]
  6. F. A. Dunn and F. Rieke, "The impact of photoreceptor noise on retina gain controls," Curr. Opin. Neurobiol. 16, 363-370 (2006). [CrossRef] [PubMed]
  7. M. E. Rudd, "Lightness computation by a neural filling-in mechanism," Proc. Soc. Photo-Opt. Instrum. Eng. 4299, 400-413 (2001).
  8. M. E. Rudd and K. F. Arrington, "Darkness filling-in: a neural model of darkness induction," Vision Res. 41, 3649-3662 (2001). [CrossRef] [PubMed]
  9. I. K. Zemach and M. E. Rudd, "Blocking of achromatic color induction signals by borders of different contrast polarities (abstract)," J. Vision 2, 106a, doi:10.1167/2.10.106 (2002). [CrossRef]
  10. I. K. Zemach and M. E. Rudd, "Spatial decay of achromatic color induction differs for lightness and darkness induction processes (abstract)," J. Vision 3, 421a, doi:10.1167/3.9.42 (2003). [CrossRef]
  11. M. E. Rudd, "Progress on a computational model of human achromatic color processing," Proc. Soc. Photo-Opt. Instrum. Eng. 5007, 170-181 (2003).
  12. M. E. Rudd and I. K. Zemach, "Quantitative properties of achromatic color induction: An edge integration analysis," Vision Res. 44, 971-981 (2004). [CrossRef] [PubMed]
  13. M. E. Rudd and I. K. Zemach, "The highest luminance anchoring rule in achromatic color perception: some counterexamples and an alternative theory," J. Vision 5, 983-1003, doi:10.1167/5.11.5 (2005). [CrossRef]
  14. M. E. Rudd and I. K. Zemach, "Contrast polarity and edge integration in achromatic color perception," J. Opt. Soc. Am. A 24, 2134-2156 (2007). [CrossRef]
  15. M. E. Rudd and D. Popa, "A theory of the neural processes underlying edge integration in human lightness perception (abstract)," J. Vision 4, 345a, doi:10.1167/4.8.345 (2004). [CrossRef]
  16. M. E. Rudd and D. Popa, "Edge integration and edge interaction in achromatic color computation (abstract)," J. Vision 4, 79a, doi:10.1167/4.11.79 (2004). [CrossRef]
  17. J. W. Onley, "Light adaptation and the brightness of brief foveal stimuli," J. Opt. Soc. Am. 51, 667-673 (1961). [CrossRef] [PubMed]
  18. J. C. Stevens, "Brightness inhibition re size of surround," Percept. Psychophys. 2, 189-192 (1967). [CrossRef]
  19. M. E. Rudd, is preparing a manuscript to be called "Edge integration and anchoring in the perception of lightness, brightness, and brightness contrast."
  20. L. E. Arend and B. Spehar, "Lightness, brightness and brightness contrast: I. Illumination variation," Percept. Psychophys. 54, 446-456 (1993). [CrossRef] [PubMed]
  21. L. E. Arend and B. Spehar, "Lightness, brightness and brightness contrast: II. Reflectance variation," Percept. Psychophys. 54, 457-468 (1993). [CrossRef] [PubMed]
  22. E. H. Land and J. J. McCann, "The Retinex theory of vision," J. Opt. Soc. Am. 61, 1-11 (1971). [CrossRef] [PubMed]
  23. E. H. Land, "The Retinex theory of color vision," Sci. Am. 237, 108-128 (1977). [CrossRef] [PubMed]
  24. E. H. Land, "Recent advances in Retinex theory and some implications for cortical computations: color vision and the natural image," Proc. Natl. Acad. Sci. U.S.A. 80, 5163-5169 (1983). [CrossRef] [PubMed]
  25. E. H. Land, "Recent advances in Retinex theory," Vision Res. 26, 7-21 (1986). [CrossRef] [PubMed]
  26. E. H. Land, "An alternative technique for the computation of the designator in the Retinex theory of color vision," Proc. Natl. Acad. Sci. U.S.A. 83, 3078-3080 (1986). [CrossRef] [PubMed]
  27. S. S. Stevens, "On the brightness of lights and loudness of sounds (abstract)," Science 118, 576 (1953).
  28. S. S. Stevens, "To honor Fechner and repeal his law," Science 133, 80-86 (1961). [CrossRef] [PubMed]
  29. D. Raab, "Magnitude estimation of the brightness of brief foveal stimuli," Science 135, 42-43 (1962). [CrossRef] [PubMed]
  30. S. S. Stevens, "Intensity functions in sensory systems," Int. J. Neurol. 6, 202-209 (1967). [PubMed]
  31. S. S. Stevens, "Sensory power functions and neural events," in Handbook of Sensory Physiology, D.Jameson and L.Hurvich, eds. (Springer, 1972), Vol. VII/7, pp. 226-242.
  32. L. E. Marks, Sensory Processes: The New Psychophysics (Academic, 1974).
  33. S. S. Stevens, Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects (Wiley, 1975).
  34. L. E. Marks, "Scales of sensation: prolegomena to any future psychophysics that will be able to come forth as science," Percept. Psychophys. 16, 358-376 (1977). [CrossRef]
  35. J. C. Stevens and L. E. Marks, "Stevens power law in vision: exponents, intercepts, and thresholds," in Fechner Day 99: Proceeding of the Fifteenth Annual Meeting of the International Society for Psychophysics, P.Killeen and W.Uttal, eds. (ISP, 1999), pp. 82-87.
  36. P. Whittle, "Contrast brightness and ordinary seeing," in Lightness, Brightness, and Transparency, A.L.Gilchrist, ed. (Erlbaum, 1994), pp. 111-157.
  37. D. H. Brainard, "The psychophysics toolbox," Spatial Vis. 10, 233-236 (1997). [CrossRef]
  38. D. G. Pelli, "The VideoToolbox software for visual psychophysics: transforming numbers into movies," Spatial Vis. 10, 437-442.
  39. L. E. Arend, J. N. Buehler, and G. R. Lockhead, "Difference information in brightness perception," Percept. Psychophys. 9, 367-370 (1971). [CrossRef]
  40. R. Shapley and R. C. Reid, "Contrast and assimilation in the perception of brightness," Proc. Natl. Acad. Sci. U.S.A. 82, 5983-5986 (1985). [CrossRef] [PubMed]
  41. R. C. Reid and R. Shapley, "Brightness induction by local contrast and the spatial dependence of assimilation," Vision Res. 28, 115-132 (1988). [CrossRef] [PubMed]
  42. A. L. Gilchrist, "Lightness contrast and failures of contrast: a common explanation," Percept. Psychophys. 43, 415-424 (1988). [CrossRef] [PubMed]
  43. S. K. Shevell, I. Holliday, and P. Whittle, "Two separate neural mechanisms of brightness induction," Vision Res. 32, 2331-2340 (1992). [CrossRef] [PubMed]
  44. S. W. Hong and S. K. Shevell, "Brightness induction: unequal spatial integration with increments and decrements," Visual Neurosci. 21, 353-357 (2004). [CrossRef]
  45. T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, "Edge integration and the perception of brightness and darkness," J. Vision 6, 1126-1145, doi:10.1167/6/10.12 (2006). [CrossRef]
  46. F. W. Cornelissen, A. R. Wade, T. Vladusich, R. F. Dougherty, and B. A. Wandell, "No functional magnetic resonance imaging evidence for brightness and color filling-in in early human visual cortex," J. Neurosci. 26, 3634-3641 (2006). [CrossRef] [PubMed]
  47. A. F. Rossi, C. D. Rittenhouse, and M. A. Paradiso, "The representation of brightness in primary visual cortex," Science 273, 1104-1107 (1996). [CrossRef] [PubMed]
  48. S. P. MacEvoy, W. Kim, and M. A. Paradiso, "Integration of surface information in primary visual cortex," Nat. Neurosci. 1, 616-620 (1998). [CrossRef]
  49. A. F. Rossi and M. A. Paradiso, "Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex," J. Neurosci. 19, 6145-6156 (1999). [PubMed]
  50. M. Kinoshita and H. Komatsu, "Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex," J. Neurophysiol. 86, 2559-2570 (2001). [PubMed]
  51. T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, "Do cortical neurons process luminance or contrast to encode surface properties?" J. Neurophysiol. 95, 2638-2649 (2005). [CrossRef] [PubMed]
  52. S. Zeki and L. Marini, "Three cortical stages of colour processing in the human brain," Brain 121, 1669-1686 (1998). [CrossRef] [PubMed]
  53. V. Walsh, "How does the cortex construct color?" Proc. Natl. Acad. Sci. U.S.A. 96, 13594-13596 (1999). [CrossRef] [PubMed]
  54. A. Bartels and S. Zeki, "The architecture of the colour centre in the human visual brain: new results and a review," Eur. J. Neurosci. 12, 172-190 (2000). [CrossRef] [PubMed]
  55. R. W. Kentridge, C. A. Heywood, and A. Cowey, "Chromatic edges, surfaces and constancies in cerebral achromatopsia." Neuropsychologia 42, 821-830 (2004). [CrossRef] [PubMed]
  56. H. E. Smithson, "Sensory, computational, and cognitive components of human colour constancy," Philos. Trans. R. Soc. London, Ser. B 360, 1329-1346, doi:10.1098/rstb.2005.1633 (2005). [CrossRef] [PubMed]
  57. C. Kennard, M. Lawden, A. B. Morland, and K. H. Ruddock, "Color discrimination and color constancy are impaired in a patient with incomplete achromatopsia associated with prestriate cortical-lesions," Proc. R. Soc. London, Ser. B 206, 169-175 (1995). [CrossRef]
  58. S. Clarke, V. Walsh, A. Schoppig, G. Assal, and A. Cowey, "Colour constancy impairments in patients with lesions of the prestriate cortex," Exp. Brain Res. 123, 154-158 (1998). [CrossRef] [PubMed]
  59. S. Zeki, A Vision of the Brain (Blackwell, 1993).
  60. S. Zeki, S. Aglioti, D. McKeefry, and G. Berlucchi, "The neurological basis of conscious color perception in a blind patient," Proc. Natl. Acad. Sci. U.S.A. 96, 14124-14129 (1999). [CrossRef] [PubMed]
  61. C. D. Gilbert and T. N. Wiesel, "Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex," J. Neurosci. 9, 2432-2442 (1989). [PubMed]
  62. J. A. Hirsch and C. D. Gilbert, "Synaptic physiology of horizontal connections in the cat's visual cortex," J. Neurosci. 11, 1800-1809 (1991). [PubMed]
  63. A. Grinvald, L. L. Lieke, R. D. Frostig, and R. Hildesheim, "Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex," J. Neurosci. 14, 2545-2568 (1994). [PubMed]
  64. M. K. Kapadia, G. Westheimer, and C. D. Gilbert, "Spatial distribution of contextual interactions in primary visual cortex and in visual perception," J. Neurosci. 84, 2048-2062 (2000).
  65. K. Mizobe, U. Polat, M. W. Pettet, and T. Kasamatsu, "Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field," Visual Neurosci. 18, 377-391 (2001). [CrossRef]
  66. D. D. Stettler, A. Das, J. Bennett, and C. D. Gilbert, "Lateral connectivity and contextual interactions in macaque primary visual cortex," Neuron 36, 739-750 (2002). [CrossRef] [PubMed]
  67. H. Wallach, "Brightness constancy and the nature of achromatic colors," J. Exp. Psychol. 38, 310-324 (1948). [CrossRef] [PubMed]
  68. H. Wallach, "The perception of neutral colors," Sci. Am. 208, 107-116 (1963). [CrossRef] [PubMed]
  69. H. Wallach, On Perception (Quadrangle, 1976).
  70. E. G. Heinemann, "Simultaneous brightness induction as a function of inducing- and test-field luminances," J. Exp. Psychol. 50, 89-96 (1955). [CrossRef] [PubMed]
  71. E. G. Heinemann, "Simultaneous brightness induction," in Handbook of Sensory Physiology, D.Jameson andL.Hurvich, eds. (Springer, 1972), Vol. VII/4, pp.146-169.
  72. A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, "An anchoring theory of lightness perception," Psychol. Rev. 106, 795-834 (1999). [CrossRef] [PubMed]
  73. P. Bressan and R. Actis-Grosso, "Simultaneous lightness contrast with double increments," Perception 30, 889-897 (2001). [CrossRef] [PubMed]
  74. P. Bressan, "The place of white in a world of grays: a double-anchoring theory of lightness perception," Psychol. Rev. 113, 526-553 (2006). [CrossRef] [PubMed]
  75. C. Hess and H. Pretori, "Quantitative investigation of the lawfulness of simultaneous brightness contrast," H. Flock and J. H. Tenny, Percept. Mot. Skills 31, 947-969 (1884/1970). [CrossRef]
  76. A. Kozaki, "A further study in the relationship between brightness constancy and contrast," Jpn. Psychol. Res. 5, 129-136 (1963).
  77. A. Kozaki, "The effect of co-existent stimuli other than the test stimulus on brightness constancy," Jpn. Psychol. Res. 7, 138-147 (1965).
  78. P. Whittle and P. D. C. Challands, "The effect of background luminance on the brightness of flashes," Vision Res. 9, 1095-1110 (1969). [CrossRef] [PubMed]
  79. A. Jacobsen and A. Gilchrist, "Hess and Pretori revisited: resolution of some old contradictions," Percept. Psychophys. 43, 7-14 (1988). [CrossRef] [PubMed]
  80. T. Agostini and N. Bruno, "Lightness contrast in CRT and paper-and-illuminant displays," Percept. Psychophys. 58, 250-258 (1996). [CrossRef] [PubMed]
  81. F. Metelli, "The perception of transparency," Sci. Am. 230, 90-98 (1974). [CrossRef] [PubMed]
  82. D. Todorovic, "Lightness and junctions," Perception 26, 379-394 (1997). [CrossRef] [PubMed]
  83. B. L. Anderson, "A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions," Perception 26, 419-453 (1997). [CrossRef] [PubMed]
  84. B. L. Anderson and J. Winawer, "Image segmentation and lightness perception," Nature 434, 79-83 (2005). [CrossRef] [PubMed]
  85. V. Ekroll, F. Faul, and R. Niederee, "The peculiar nature of simultaneous colour contrast in uniform surrounds," Vision Res. 44, 1765-1786 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited