OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 10 — Oct. 31, 2007

Adaptive model of the gradient index of the human lens. II. Optics of the accommodating aging lens

Rafael Navarro, Fernando Palos, and Luís M. González  »View Author Affiliations


JOSA A, Vol. 24, Issue 9, pp. 2911-2920 (2007)
http://dx.doi.org/10.1364/JOSAA.24.002911


View Full Text Article

Enhanced HTML    Acrobat PDF (681 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple, parametric model of the gradient refractive index distribution (GRIN) of the human lens with conicoid surfaces able to adapt to individual distributions as well as to the changes of the lens shape and structure with age and accommodation is presented. The first part of this work was published in a companion paper [ J. Opt. Soc. Am. A 24, 2175 (2007) ]. It included the development of the mathematical formulation of the adaptive model; the validation of its customization capability by fitting, sample by sample, a set of in vitro refractive index distributions of lenses of different ages, ranging from 7 to 82 years, from the recent literature; and an average model of the (in vitro) aging crystalline lens. Here we extrapolate that in vitro GRIN model by assuming that the same structural parameters are valid for the living lens. Then, recent data of the changes of the shape of the aging lens with accommodation from the literature are used to build an aging and accommodating lens model. This is straightforward since the GRIN model adapts automatically to the chosen external lens geometry. A strong coupling was found between the adaptive GRIN distributions and the conic constants affecting the refractive power. To account for the lens paradox and the reported changes in lens spherical aberration with age and accommodation, age- and accommodation-dependent functions for the anterior and posterior internal conic constants were derived through optimization.

© 2007 Optical Society of America

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Vision, color, and visual optics

History
Original Manuscript: January 2, 2007
Revised Manuscript: May 18, 2007
Manuscript Accepted: May 22, 2007
Published: August 22, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Rafael Navarro, Fernando Palos, and Luís M. González, "Adaptive model of the gradient index of the human lens. II. Optics of the accommodating aging lens," J. Opt. Soc. Am. A 24, 2911-2920 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-24-9-2911


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Brown, "The change in lens curvature with age," Exp. Eye Res. 19, 175-183 (1974). [CrossRef] [PubMed]
  2. J. F. Koretz, C. A. Cook, and P. L. Kaufman, "Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus," Invest. Ophthalmol. Visual Sci. 38, 569-578 (1997).
  3. J. F. Koretz, C. A. Cook, and P. L. Kaufman, "Aging of the human lens: changes in lens shape at zero-diopter accommodation," J. Opt. Soc. Am. A 18, 265-272 (2001). [CrossRef]
  4. M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, "Change in shape of the aging human crystalline lens with accommodation," Vision Res. 45, 117-132 (2005). [CrossRef]
  5. N. Brown, "The change in shape and internal form of the lens of the eye on accommodation," Exp. Eye Res. 15, 441-459 (1973). [CrossRef] [PubMed]
  6. M. Dubbelman, G. L. van der Heijde, H. A. Weeber, and G. F. J. M. Vrensen, "Changes in the internal structure of the human crystalline lens with age and accommodation," Vision Res. 43, 2363-2375 (2003). [CrossRef] [PubMed]
  7. P. Artal, M. Ferro, I. Miranda, and R. Navarro, "Effects of aging in retinal image quality," J. Opt. Soc. Am. A 10, 1656-1662 (1993). [CrossRef] [PubMed]
  8. I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, "Monochromatic aberrations as a function of age, from childhood to advanced age," Invest. Ophthalmol. Visual Sci. 44, 5438-5446 (2003). [CrossRef]
  9. A. Ivanoff, Les aberrations de l'oeil. Leur role dans l'accommodation (Éditions de la Revue d'Optique Théorique et Instrumentale, Paris, 1953).
  10. J. C. He, S. A. Burns, and S. Marcos, "Monochromatic aberrations in the accommodated human eye," Vision Res. 40, 41-48 (2000). [CrossRef] [PubMed]
  11. M. Millodot and J. Sivak, "Contribution of the cornea and lens to the spherical aberration of the eye," Vision Res. 19, 685-687 (1979). [CrossRef] [PubMed]
  12. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, "Compensation of corneal aberrations by internal optics in the human eye," J. Vision 1, 1-8 (2001). [CrossRef]
  13. P. Artal, E. Berrio, A. Guirao, and P. Piers, "Contribution of the cornea and internal surfaces to the change of ocular aberrations with age," J. Opt. Soc. Am. A 19, 137-143 (2002). [CrossRef]
  14. A. Popiolek-Masajada, "Numerical study of the influence of the shell structure of the crystalline lens on the refractive properties of the human eye," Ophthalmic Physiol. Opt. 19, 41-49 (1999). [CrossRef]
  15. G. Smith and D. A. Atchison, "The gradient index and spherical aberration of the lens of the human eye," Ophthalmic Physiol. Opt. 21, 317-326 (2001). [CrossRef] [PubMed]
  16. M. C. W. Campbell, "Measurement of refractive index in an intact crystalline lens," Vision Res. 24, 409-415 (1984). [CrossRef] [PubMed]
  17. B. K. Pierscionek and D. Y. C. Chan, "Refractive index gradient of human lenses," Optom. Vision Sci. 66, 822-829 (1989). [CrossRef]
  18. R. P. Hemenger, L. F. Garner, and C. S. Ooi, "Change with age of the refractive index gradient of the human ocular lens," Invest. Ophthalmol. Visual Sci. 36, 703-707 (1995).
  19. B. K. Pierscionek, "Refractive index contours in the human lens," Exp. Eye Res. 64, 887-893 (1997). [CrossRef] [PubMed]
  20. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, "Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI)," Vision Res. 45, 2352-2366 (2005). [CrossRef] [PubMed]
  21. S. Nakao, T. Ono, R. Nagata, and K. Iwata, "Model of refractive indices in the human crystalline lens," Jpn. J. Clin. Ophthalmol. 23, 903-906 (1969).
  22. G. Smith, B. K. Pierscionek, and D. A. Atchison, "The optical modelling of the human lens," Ophthalmic Physiol. Opt. 11, 359-369 (1991). [CrossRef] [PubMed]
  23. D. A. Atchison and G. Smith, "Continuous gradient index and shell models of the human lens," J. Opt. Soc. Am. A 14, 1684-1695 (1995).
  24. H.-L. Liou and N. A. Brennan, "Anatomically accurate finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997). [CrossRef]
  25. J. W. Blaker, "Toward an adaptive model of the human eye," J. Opt. Soc. Am. 70, 220-223 (1980). [CrossRef] [PubMed]
  26. A. Popiolek-Masajada and H. Kasprzak, "Model of the optical system of the human eye during accommodation," Ophthalmic Physiol. Opt. 22, 201-208 (2002). [CrossRef] [PubMed]
  27. G. Smith, D. A. Atchison, and B. K. Pierscionek, "Modeling the power of the aging human eye," J. Opt. Soc. Am. A 9, 2111-2117 (1992). [CrossRef] [PubMed]
  28. R. Navarro, F. Palos, and L. González, "Adaptive model of the gradient index of the human lens. I. Formulation and model of aging ex vivo lenses," J. Opt. Soc. Am. A 24, 2175-2185 (2007). [CrossRef]
  29. R. Navarro, L. González, and J. L. Hernández-Matamoros, "On the prediction of optical aberrations by personalized eye models," Optom. Vision Sci. 83, 371-381 (2006). [CrossRef]
  30. S. Norrby, "The Dubbelman eye model analysed by ray tracing through aspheric surfaces," Ophthalmic Physiol. Opt. 25, 153-161 (2005). [CrossRef] [PubMed]
  31. M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, "The thickness of the aging human lens obtained from corrected Scheimpflug images," Optom. Vision Sci. 78, 411-416 (2001). [CrossRef]
  32. M. Dubbelman, Department of Physics and Medical Technology, VU University Medical Center, Amsterdam; m.dubbelman@vumc.nl (personal communication, 2007).
  33. R. Navarro, J. Santamaría, and J. Bescós, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273-1281 (1985). [CrossRef] [PubMed]
  34. Y. Le Grand and S. G. El Hage, Physiological Optics (Springer-Verlag, 1980), pp. 54-55.
  35. G. Smith and D. A. Atchison, "Equivalent power of the crystalline lens of the human eye: comparison of methods of calculation," J. Opt. Soc. Am. A 14, 2537-2546 (1997). [CrossRef]
  36. L. F. Garner and G. Smith, "Changes in equivalent and gradient refractive index of the crystalline lens with accommodation," Optom. Vision Sci. 74, 114-119 (1997). [CrossRef]
  37. R. L. Calver, M. L. Cox, and D. B. Elliot, "Effects of aging on the monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 16, 2069-2078 (1999). [CrossRef]
  38. A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, "In vitro dimensions and curvatures of human lenses," Vision Res. 46, 1002-1009 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited