OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 12 — Dec. 1, 2008

Calculation of retinal image quality for polychromatic light

Sowmya Ravikumar, Larry N. Thibos, and Arthur Bradley  »View Author Affiliations


JOSA A, Vol. 25, Issue 10, pp. 2395-2407 (2008)
http://dx.doi.org/10.1364/JOSAA.25.002395


View Full Text Article

Enhanced HTML    Acrobat PDF (972 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Although the retinal image is typically polychromatic, few studies have examined polychromatic image quality in the human eye. We begin with a conceptual framework including the formulation of a psychophysical linking hypothesis that underlies the utility of image quality metrics based on the polychromatic point-spread function. We then outline strategies for computing polychromatic point-spread functions of the eye when monochromatic aberrations are known for only a single wavelength. Implementation problems and solutions for this strategy are described. Polychromatic image quality is largely unaffected by wavelength-dependent diffraction and higher-order chromatic aberration. However, accuracy is found to depend critically upon spectral sampling. Using typical aberrations from the Indiana Aberration Study, we assessed through-focus image quality for model eyes with and without chromatic aberrations using a polychromatic metric called the visual Strehl ratio. In the presence of typical levels of monochromatic aberrations, the effect of longitudinal chromatic aberration is greatly reduced. The effect of typical levels of transverse chromatic aberration is virtually eliminated in the presence of longitudinal chromatic aberration and monochromatic aberrations. Clinical value and limitations of the method are discussed.

© 2008 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: November 5, 2007
Revised Manuscript: July 10, 2008
Manuscript Accepted: July 11, 2008
Published: September 4, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Sowmya Ravikumar, Larry N. Thibos, and Arthur Bradley, "Calculation of retinal image quality for polychromatic light," J. Opt. Soc. Am. A 25, 2395-2407 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-25-10-2395


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Shannon, The Art and Science of Optical Design (Cambridge U. Press, 1997).
  2. W. B. Wetherell, “The calculation of image quality,” in Applied Optics and Optical Engineering, R.R.Shannon and J.C.Wyant, eds. (Academic, 1980).
  3. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps,” J. Vision 4, 329-351 (2004).
  4. L. Chen, B. Singer, A. Guirao, J. Porter, and D. R. Williams, “Image metrics for predicting subjective image quality,” Optom. Vision Sci. 82, 358-369 (2005). [CrossRef]
  5. J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322-328 (2004). [CrossRef]
  6. S. Marcos, S. Barbero, L. Llorente, and J. Merayo-Lloves, “Optical response to LASIK surgery for myopia from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349-3356 (2001).
  7. R. A. Applegate, J. D. Marsack, and L. N. Thibos, “Metrics of retinal image quality predict visual performance in eyes with 20/17 or better visual acuity,” Optom. Vision Sci. 83, 635-640 (2006). [CrossRef]
  8. X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vision 4, 310-321 (2004). [CrossRef]
  9. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594-3600 (1992). [CrossRef] [PubMed]
  10. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30, 33-49 (1990). [CrossRef] [PubMed]
  11. M. C. Rynders, B. A. Lidkea, W. J. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle Ψ in a population of young adult eyes,” J. Opt. Soc. Am. A 12, 2348-2357 (1995). [CrossRef]
  12. L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599-607 (1991). [CrossRef]
  13. L. N. Thibos and A. Bradley, “Chromatic aberration and its impact on vision,” in Wavefront Customized Visual Correction: The Quest for Super Vision II, R.R.Krueger, R.A.Applegate, and S.M.MacRae, eds. (Slack, 2004), pp. 91-99.
  14. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309-4323 (1999). [CrossRef]
  15. S. Ravikumar, A. Bradley, and L. N. Thibos, “Do monochromatic aberrations protect the eye against chromatic blur?” Invest. Ophthalmol. Visual Sci. 47, E-Abstract 1505 (2006).
  16. G. Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266-275 (2002). [CrossRef]
  17. J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye's defence against chromatic blur,” Nature 417, 174-176 (2002). [CrossRef] [PubMed]
  18. F. W. Campbell and R. W. Gubisch, “The effect of chromatic aberration on visual acuity,” J. Physiol. (London) 192, 345-358 (1967).
  19. J. Krauskopf, “Light distribution in human retinal images,” J. Opt. Soc. Am. 52, 1046-1050 (1962). [CrossRef]
  20. L. N. Thibos and A. Bradley, “Modeling the refractive and neuro-sensor systems of the eye,” in Visual Instrumentation: Optical Design and EngineeringPrinciples, P.Mouroulis, ed. (McGraw-Hill, 1999), pp. 101-159.
  21. P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397-1411 (1993). [CrossRef] [PubMed]
  22. J. Liang, B. Brimm, S. Goelz, and J. F. Bille, “Objective measurement of the wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949-1957 (1994). [CrossRef]
  23. J. Porter, Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications (Wiley-Interscience, 2006). [CrossRef]
  24. E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14, 6213-6225 (2006). [CrossRef] [PubMed]
  25. Y. Benny, S. Manzanera, P. M. Prieto, E. N. Ribak, and P. Artal, “Wide-angle chromatic aberration corrector for the human eye,” J. Opt. Soc. Am. A 24, 1538-1544 (2007). [CrossRef]
  26. A. van Meeteren, “Calculations on the optical modulation transfer function of the human eye for white light,” Opt. Acta 21, 395-412 (1974). [CrossRef]
  27. S. M. C. Nascimento, F. Ferreira, and D. H. Foster, “Statistics of spatial cone-excitation ratios in natural scenes,” J. Opt. Soc. Am. A 19, 1484-1490 (2002). [CrossRef]
  28. P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361-366 (1986). [CrossRef] [PubMed]
  29. P. A. Howarth, X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” Vision Res. 5, 2087-2092 (1988).
  30. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329-2348 (2002). [CrossRef]
  31. E. M. Granger and K. N. Cupery, “An optical merit function (SQF) which correlates with subjective image judgements,” Photograph. Sci. Eng. 16, 221-230 (1972).
  32. P. G. J. Barten, “Evaluation of subjective image quality with the square-root integral method,” J. Opt. Soc. Am. A 7, 2024-2031 (1990). [CrossRef]
  33. G. T. Di Francia, “Modern trends in the evaluation of optical images,” J. Opt. Soc. Am. 47, 507 (1957). [CrossRef]
  34. P. Mouroulis and H. Zhang, “Visual instrument image quality metrics and the effects of coma and astigmatism,” J. Opt. Soc. Am. A 9, 34-42 (1992). [CrossRef] [PubMed]
  35. A. Guirao and D. Williams, “A method to predict refractive errors from wave aberration data,” Optom. Vision Sci. 80, 36-42 (2003). [CrossRef]
  36. G. S. Brindley, Physiology of the Retina and Visual Pathway, 2nd ed. (Arnold, 1970), p. 315.
  37. P. B. Fellgett and E. H. Linfoot, “On assessment of optical images,” Philos. Trans. R. Soc. London, Ser. A 247, 369-407 (1955). [CrossRef]
  38. M. A. Webster, M. A. Georgeson, and S. M. Webster, “Neural adjustments to image blur,” Nat. Neurosci. 5, 839-840 (2002). [CrossRef] [PubMed]
  39. C. E. Campbell, “Improving visual function diagnostic metrics with the use of higher-order aberration information from the eye,” J. Refract. Surg. 20, S495-503 (2004). [PubMed]
  40. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  41. R. Barnden, “Calculation of axial polychromatic optical transfer function,” Opt. Acta 21, 981-1003 (1974). [CrossRef]
  42. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vision Sci. 74, 548-556 (1997). [CrossRef]
  43. T. Yamaguchi, K. Negishi, T. Noda, K. Fujiiki, K. Tsubota, and K. Ohnuma, “Differences in wavefront aberrations in different wavelengths,” Invest. Ophthalmol. Visual Sci. 47, E-Abstract 1199 (2006).
  44. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vision Sci. 80, 26-35 (2003). [CrossRef]
  45. H. H. Hopkins, Wave Theory of Aberrations (Oxford U. Press, 1950).
  46. C. Font, J. C. Escalera, and M. J. Yzuel, “Polychromatic point spread functions: calculation accuracy,” J. Mod. Opt. 41, 1401-1413 (1994). [CrossRef]
  47. D. B. Judd, D. L. MacAdam, and G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031-1040 (1964). [CrossRef]
  48. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652-660 (2002). [PubMed]
  49. L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 427-433 (2002). [CrossRef] [PubMed]
  50. L. N. Thibos, “From wavefronts to refractions,” in Adaptive Optics for Vision Science, J.Porter, H.Queener, K.Thorn, and R.Awwal, eds. (Wiley, 2006), pp. 331-362.
  51. F. W. Campbell, “The depth of field of the human eye,” Opt. Acta 4, 157-164 (1957). [CrossRef]
  52. W. N. Charman and H. Whitefoot, “Pupil diameter and the depth-of-field of the human eye as measured by laser speckle,” Opt. Acta 24, 1211-1216 (1977). [CrossRef]
  53. R. R. Krueger, R. A. Applegate, and S. M. MacRae, Wavefront Customized Visual Correction: The Quest for Super Vision II (Slack, Inc., 2004).
  54. D. A. Atchison, W. N. Charman, and R. L. Woods, “Subjective depth-of-focus of the eye,” Optom. Vision Sci. 74, 511-520 (1997). [CrossRef]
  55. S. Ravikumar, A. Bradley, and L. N. Thibos, “Influence of environmental color on refraction and polychromatic image quality,” J. Vision 5, 81-81 (2005). [CrossRef]
  56. E. M. Granger and J. C. Heurtley, “Visual chromaticity-modulation transfer function.,” J. Opt. Soc. Am. 63, 1173-1174 (1973). [CrossRef] [PubMed]
  57. K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings.,” J. Physiol. (London) 359, 381-400 (1985).
  58. F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. (London) 181, 576-593 (1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited