OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 12 — Dec. 1, 2008

Parametric fuzzy sets for automatic color naming

Robert Benavente, Maria Vanrell, and Ramon Baldrich  »View Author Affiliations


JOSA A, Vol. 25, Issue 10, pp. 2582-2593 (2008)
http://dx.doi.org/10.1364/JOSAA.25.002582


View Full Text Article

Enhanced HTML    Acrobat PDF (1244 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we present a parametric model for automatic color naming where each color category is modeled as a fuzzy set with a parametric membership function. The parameters of the functions are estimated in a fitting process using data derived from psychophysical experiments. The name assignments obtained by the model agree with previous psychophysical experiments, and therefore the high-level color-naming information provided can be useful for different computer vision applications where the use of a parametric model will introduce interesting advantages in terms of implementation costs, data representation, model analysis, and model updating.

© 2008 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.2960) Image processing : Image analysis
(100.5010) Image processing : Pattern recognition
(110.0110) Imaging systems : Imaging systems
(110.1758) Imaging systems : Computational imaging

ToC Category:
Image Processing

History
Original Manuscript: January 30, 2008
Revised Manuscript: June 5, 2008
Manuscript Accepted: July 18, 2008
Published: September 25, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Robert Benavente, Maria Vanrell, and Ramon Baldrich, "Parametric fuzzy sets for automatic color naming," J. Opt. Soc. Am. A 25, 2582-2593 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-25-10-2582


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Gegenfurtner and D. Kiper, “Color vision,” Annu. Rev. Neurosci. 26, 181-206 (2003). [CrossRef] [PubMed]
  2. B. Berlin and P. Kay, Basic Color Terms: Their Universality and Evolution (University of California Press, 1969).
  3. R. Boynton and C. Olson, “Salience of chromatic basic color terms confirmed by three measures,” Vision Res. 30, 1311-1317 (1990). [CrossRef] [PubMed]
  4. J. Sturges and T. Whitfield, “Salient features of Munsell color space as a function of monolexemic naming and response latencies,” Vision Res. 37, 307-313 (1997). [CrossRef] [PubMed]
  5. S. Guest and D. V. Laar, “The structure of colour naming space,” Vision Res. 40, 723-734 (2000). [CrossRef] [PubMed]
  6. N. Moroney, “Unconstrained Web-based color naming experiment,” Proc. SPIE 5008, 36-46 (2003). [CrossRef]
  7. S. Tominaga, “A color-naming method for computer color vision,” in Proceedings of IEEE International Conference on Cybernetics and Society (IEEE, 1985), pp. 573-577.
  8. H. Lin, M. Luo, L. MacDonald, and A. Tarrant, “A cross-cultural colour-naming study. Part III--A colour-naming model,” Color Res. Appl. 26, 270-277 (2001). [CrossRef]
  9. Z. Wang, M. Luo, B. Kang, H. Choh, and C. Kim, “An algorithm for categorising colours into universal colour names,” in Proceedings of the 3rd European Conference on Colour in Graphics, Imaging, and Vision (Society for Imaging Science and Technology, IS&T, 2006), pp. 426-430.
  10. P. Kay and C. McDaniel, “The linguistic significance of the meanings of basic color terms,” Language 3, 610-646 (1978). [CrossRef]
  11. J. Lammens, “A computational model of color perception and color naming,” Ph.D. thesis (State University of New York, 1994).
  12. A. Mojsilovic, “A computational model for color naming and describing color composition of images,” IEEE Trans. Image Process. 14, 690-699 (2005). [CrossRef] [PubMed]
  13. M. Seaborn, L. Hepplewhite, and J. Stonham, “Fuzzy colour category map for the measurement of colour similarity and dissimilarity,” Pattern Recogn. 38, 165-177 (2005).
  14. J. Sturges and T. Whitfield, “Locating basic colours in the Munsell space,” Color Res. Appl. 20, 364-376 (1995). [CrossRef]
  15. E. van den Broek, T. Schouten, and P. Kisters, “Modeling human color categorization,” Pattern Recogn. Lett. 29, 1136-1144 (2008). [CrossRef]
  16. G. Gagaudakis and P. Rosin, “Incorporating shape into histograms for CBIR,” Pattern Recogn. 35, 81-91 (2002). [CrossRef]
  17. P. KaewTrakulPong and R. Bowden, “A real time adaptive visual surveillance system for tracking low-resolution colour targets in dynamically changing scenes,” Image Vis. Comput. 21, 913-929 (2003). [CrossRef]
  18. A. Mojsilovic, J. Gomes, and B. Rogowitz, “Semantic-friendly indexing and quering of images based on the extraction of the objective semantic cues,” Int. J. Comput. Vis. 56, 79-107 (2004). [CrossRef]
  19. E. van den Broek, E. van Rikxoort, and T. Schouten, “Human-centered object-based image retrieval,” in Advances in Pattern Recognition, Vol. 3687 of Lecture Notes in Computer Science, S.Singh, M.Singh, C.Apte, and P.Perner (Springer-Verlag, 2005), pp. 492-501.
  20. G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications (Prentice Hall, 1995).
  21. D. Alexander, “Statistical modelling of colour data and model selection for region tracking,” Ph.D. thesis (Department of Computer Science, University College London, 1997).
  22. R. Benavente, M. Vanrell, and R. Baldrich, “A data set for fuzzy colour naming,” Color Res. Appl. 31, 48-56 (2006). [CrossRef]
  23. R. Benavente, F. Tous, R. Baldrich, and M. Vanrell, “Statistical modelling of a colour naming space,” in Proceedings of the 1st European Conference on Colour in Graphics, Imaging, and Vision (CGIV'2002) (Society for Imaging Science and Technology, IS&T, 2002), pp. 406-411.
  24. R. Benavente and M. Vanrell, “Fuzzy colour naming based on sigmoid membership functions,” in Proceedings of the 2nd European Conference on Colour in Graphics, Imaging, and Vision (CGIV'2004) (Society for Imaging Science and Technology, IS&T, 2004), pp. 135-139.
  25. R. Benavente, M. Vanrell, and R. Baldrich, “Estimation of fuzzy sets for computational colour categorization,” Color Res. Appl. 29, 342-353 (2004). [CrossRef]
  26. W. Graustein, Homogeneous Cartesian Coordinates. Linear Dependence of Points and Lines (Macmillan, 1930), Chap. 3, pp. 29-49.
  27. Munsell Color Company, Munsell Book of Color--Matte Finish Collection (Munsell Color Company, 1976).
  28. Spectral Database, University of Joensuu Color Group, last accessed May 27, 2008, http://spectral.joensuu.fi/.
  29. J. Lagarias, J. Reeds, M. Wright, and P. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112-147 (1998). [CrossRef]
  30. R. MacLaury, “From brightness to hue: an explanatory model of color-category evolution,” Curr. Anthropol. 33, 137-186 (1992). [CrossRef]
  31. D. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput. Vis. 5, 5-36 (1990). [CrossRef]
  32. G. Finlayson, S. Hordley, and P. Hubel, “Color by correltation: a simple, unifying framework for color constancy,” IEEE Trans. Pattern Anal. Mach. Intell. 23, 1209-1221 (2001). [CrossRef]
  33. G. Finlayson, S. Hordley, and I. Tastl, “Gamut constrained illuminant estimation,” Int. J. Comput. Vis. 67, 93-109 (2006). [CrossRef]
  34. M. Vanrell, R. Baldrich, A. Salvatella, R. Benavente, and F. Tous, “Induction operators for a computational colour texture representation,” Comput. Vis. Image Underst. 94, 92-114 (2004). [CrossRef]
  35. X. Otazu and M. Vanrell, “Building perceived colour images,” in Proceedings of the 2nd European Conference on Colour in Graphics, Imaging, and Vision (CGIV'2004) (Society for Imaging Science and Technology, IS&T, 2004), pp. 140-145.
  36. R. Boynton, “Insights gained from naming the OSA colors,” in Color Categories in Thought and Language, C.L.Hardin, and L.Maffi, eds. (Cambridge U. Press, 1997), pp. 135-150. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited