OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 4 — Apr. 23, 2008

Comparison of sensitivity to color changes in natural and phase-scrambled scenes

Ali Yoonessi and Frederick A. A. Kingdom  »View Author Affiliations


JOSA A, Vol. 25, Issue 3, pp. 676-684 (2008)
http://dx.doi.org/10.1364/JOSAA.25.000676


View Full Text Article

Enhanced HTML    Acrobat PDF (1353 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Traditionally, thresholds for detecting photometric changes have been measured by using stimuli such as disks or gratings and accounted for in terms of relatively low-level mechanisms in the visual pathway. Therefore one might not expect the higher-order structures that characterize natural scenes to influence thresholds for detecting uniform photometric changes. We compared thresholds for detecting uniform photometric changes for natural and phase-scrambled versions of images of natural scenes. The chromaticity and luminance of every pixel was represented as a vector in a modified version of the MacLeod–Boynton color space and was translated, rotated, or compressed within that color space. Thresholds for all types of transformation were significantly lower in the raw compared with phase-scrambled scenes, and we attribute this to the influence of higher-order structure.

© 2008 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1720) Vision, color, and visual optics : Color vision

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: August 29, 2007
Manuscript Accepted: December 18, 2007
Published: February 13, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Ali Yoonessi and Frederick A. A. Kingdom, "Comparison of sensitivity to color changes in natural and phase-scrambled scenes," J. Opt. Soc. Am. A 25, 676-684 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-25-3-676


Sort:  Year  |  Journal  |  Reset  

References

  1. M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283-3298 (1997). [CrossRef]
  2. D. H. Brainard, M. D. Rutherford, and J. M. Kraft, “Color constancy compared: experiments with real images and color monitors,” Invest. Ophthalmol. Visual Sci. 38, 2206-2206 (1997).
  3. C. A. Párraga, T. Troscianko, and D. J. Tolhurst, “Spatiochromatic properties of natural images and human vision,” Curr. Biol. 12, 483-487 (2002). [CrossRef] [PubMed]
  4. D. J. Tolhurst, Y. Tadmor, and T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229-232 (1992). [CrossRef] [PubMed]
  5. L. N. Piotrowski and F. W. Campbell, “A demonstration of the visual importance and flexibility of spatial-frequency amplitude and phase,” Perception 11, 337-346 (1982). [CrossRef] [PubMed]
  6. J. M. Rubin and W. A. Richards, “Color vision and image intensities: when are changes material?” Biol. Cybern. 45, 215-226 (1982). [CrossRef] [PubMed]
  7. D. L. Ruderman, T. W. Cronin, and C. C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036-2045 (1998). [CrossRef]
  8. I. Fine, A. R. Wade, A. A. Brewer, M. G. May, D. F. Goodman, G. M. Boynton, B. A. Wandell, and D. I. A. MacLeod, “Long-term deprivation affects visual perception and cortex,” Nat. Neurosci. 6, 915-916 (2003). [CrossRef] [PubMed]
  9. M. F. Tappen, W. T. Freeman, and E. H. Adelson, “Recovering intrinsic images from a single image,” Adv. Neural Inf. Process. Syst. 15, 1459-1472 (2002).
  10. A. Olmos and A. A. Frederick, “A biologically inspired algorithm for the recovery of shading and reflectance images,” Perception 33, 1463-1473 (2004). [CrossRef]
  11. A. P. Johnson, F. Kingdom, and C. J. Baker, “Spatiochromatic statistics of natural scenes: first-and second-order information and their correlational structure,” J. Opt. Soc. Am. A 22, 2050-2059 (2005). [CrossRef]
  12. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,” J. Physiol. (London) 160, 106-154 (1962).
  13. D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215-243 (1968).
  14. C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237-260 (1969).
  15. D. Ferster, “Spatially opponent excitation and inhibition in simple cells of the cat visual cortex,” J. Neurosci. 8, 1172-1180 (1988). [PubMed]
  16. A. Bradley, E. Switkes, and K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841-856 (1988). [CrossRef] [PubMed]
  17. M. J. Sankeralli and K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633-2646 (1997). [CrossRef]
  18. B. A. Wandell, “Color measurement and discrimination,” J. Opt. Soc. Am. A 2, 62-71 (1985). [CrossRef] [PubMed]
  19. J. Krauskopf, Q. Zaidi, and M. B. Mandler, “Mechanisms of simultaneous color induction,” J. Opt. Soc. Am. A 3, 1752-1757 (1986). [CrossRef] [PubMed]
  20. G. R. Cole, T. Hine, and W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38-51 (1993). [CrossRef] [PubMed]
  21. K. T. Mullen and M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136-3151 (1994). [CrossRef]
  22. K. T. Mullen and M. J. Sankeralli, “Evidence for the stochastic independence of the blue-yellow, red-green and luminance detection mechanisms revealed by subthreshold summation,” Vision Res. 39, 733-745 (1999). [CrossRef] [PubMed]
  23. K. K. De Valois and E. Switkes, “Simultaneous masking interactions between chromatic and luminance gratings,” J. Opt. Soc. Am. 73, 11-18 (1983). [CrossRef] [PubMed]
  24. E. Switkes, A. Bradley, and K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149-1162 (1988). [CrossRef] [PubMed]
  25. C. Blakemore and E. A. Tobin, “Lateral inhibition between orientation detectors in the cat's visual cortex,” Exp. Brain Res. 15, 439-440 (1972). [CrossRef] [PubMed]
  26. J. I. Nelson and B. J. Frost, “Orientation-selective inhibition from beyond the classic visual receptive field,” Brain Res. 139, 359-365 (1978). [CrossRef] [PubMed]
  27. J. J. Knierim and D. C. van Essen, “Neuronal responses to static texture patterns in area V1 of the alert macaque monkey,” J. Neurophysiol. 67, 961-980 (1992). [PubMed]
  28. A. M. Slllito, K. L. Grieve, H. E. Jones, J. Cudeiro, and J. Davls, “Visual cortical mechanisms detecting focal orientation discontinuities,” Nature 378, 492-496 (1995). [CrossRef]
  29. J. R. Cavanaugh, W. Bair, and J. A. Movshon, “Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons,” J. Neurophysiol. 88, 2530-2546 (2002). [CrossRef] [PubMed]
  30. J. B. Levitt and J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,” Nature 387, 73-76 (1997). [CrossRef] [PubMed]
  31. H. C. Nothdurft, J. L. Gallant, and D. C. Van Essen, “Response modulation by texture surround in primate area V1: correlates of 'popout' under anesthesia,” Visual Neurosci. 16, 15-34 (1999). [CrossRef]
  32. H. E. Jones, K. L. Grieve, W. Wang, and A. M. Sillito, “Surround suppression in primate V1,” J. Neurophysiol. 86, 2011-2028 (2001). [PubMed]
  33. H. Yao and C. Y. Li, “Clustered organization of neurons with similar extra-receptive field properties in the primary visual cortex,” Neuron 35, 547-553 (2002). [CrossRef] [PubMed]
  34. D. Smyth, B. Willmore, G. E. Baker, I. D. Thompson, and D. J. Tolhurst, “The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation,” J. Neurosci. 23, 4746-4759 (2003). [PubMed]
  35. K. Zipser, V. A. F. Lamme, and P. H. Schiller, “Contextual modulation in primary visual cortex,” J. Neurosci. 16, 7376-7389 (1996). [PubMed]
  36. N. Petkov and M. A. Westenberg, “Suppression of contour perception by band-limited noise and its relation to nonclassical receptive field inhibition,” Biol. Cybern. 88, 236-246 (2003). [CrossRef] [PubMed]
  37. C. Grigorescu, N. Petkov, and M. A. Westenberg, “Contour and boundary detection improved by surround suppression of texture edges,” Image Vis. Comput. 22, 609-622 (2004). [CrossRef]
  38. H. B. Barlow, “Single units and sensation: a neuron doctrine for perceptual psychology,” Perception 1, 371-394 (1972). [CrossRef] [PubMed]
  39. H. Barlow, “Redundancy reduction revisited,” Network Comput. Neural Syst. 12, 241-253 (2001). [CrossRef]
  40. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379-2394 (1987). [CrossRef] [PubMed]
  41. D. J. Field, “What is the goal of sensory coding?” Neural Comput. 6, 559-601 (1994). [CrossRef]
  42. B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: a strategy employed by V1?” Vision Res. 37, 3311-3325 (1997). [CrossRef]
  43. B. A. Olshausen and D. J. Field, “Sparse coding of sensory inputs,” Curr. Opin. Neurobiol. 14, 481-487 (2004). [CrossRef] [PubMed]
  44. M. G. A. Thomson, “High-order structure in natural scenes,” J. Opt. Soc. Am. A 16, 1549-1553 (1999). [CrossRef]
  45. M. G. A. Thomson, “Beats, kurtosis and visual coding,” Network Comput. Neural Syst. 12, 271-287 (2001). [CrossRef]
  46. H. von Helmholtz, Handbuch der Physiologischen Optik (Leopold Voss, 1867).
  47. D. H. Foster, “Does colour constancy exist,” Trends Cogn. Sci. 7, 439-443 (2003). [CrossRef] [PubMed]
  48. H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Philos. Trans. R. Soc. London, Ser. B 360, 1329-1346 (2005). [CrossRef] [PubMed]
  49. Q. Zaidi, “Color constancy in a rough world,” Color Res. Appl. 26, S192-S200 (2001). [CrossRef]
  50. J. Schubert and A. L. Gilchrist, “Relative luminance is not derived from absolute luminance,” Invest. Ophthalmol. Visual Sci. Abstract Book 2826-3, 1258 (1992).
  51. F. A. A. Kingdom, D. J. Field, and A. Olmos, “Does spatial invariance result from insensitivity to change?” J. Vision 7, 1-13 (2007). [CrossRef]
  52. M. Bhalla and D. R. Proffitt, “Visual-motor recalibration in geographical slant perception,” J. Exp. Psychol. Hum. Percept. Perform. 25, 1076-1096 (1999). [CrossRef] [PubMed]
  53. A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795-834 (1999). [CrossRef] [PubMed]
  54. M. D. Rutherford and D. H. Brainard, “Lightness constancy: A direct test of the illumination-estimation hypothesis,” Psychol. Sci. 13, 142-149 (2002). [CrossRef] [PubMed]
  55. K. Amano, D. H. Foster, and S. M. C. Nascimento, “Color constancy in natural scenes with and without an explicit illuminant cue,” Visual Neurosci. 23, 351-356 (2006). [CrossRef]
  56. J. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637-640 (2002). [CrossRef] [PubMed]
  57. L. T. Maloney, “Illuminant estimation as cue combination,” J. Vision 2, 493-504 (2002). [CrossRef]
  58. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge U. Press, 1985).
  59. F. A. A. Kingdom, D. J. Field, and A. Olmos, “Does spatial invariance result from insensitivity to change,” J. Vision 7, 1-13 (2004).
  60. A. Yoonessi and F. A. A. Kingdom, “Faithful reproduction of colours on a CRT monitor,” Color Res. Appl. 32, 388-393 (2007). [CrossRef]
  61. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500nm,” Vision Res. 15, 161-171 (1975). [CrossRef] [PubMed]
  62. E. W. Weisstein, MathWorld-A Wolfram Web Resource, (CRC Press, 2004).
  63. R. M. Boynton, “Implications of the minimally distinct border,” J. Opt. Soc. Am. 63, 1037-1043 (1973). [CrossRef] [PubMed]
  64. F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293-1313 (2001). [CrossRef]
  65. N. Prins, Department of Psychology, University of Mississipi, University, Miss. 38677 (personal communication, 2007).
  66. E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley, “Color transfer between images,” IEEE Comput. Graphics Appl. 21, 34-41 (2001). [CrossRef]
  67. B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: a strategy employed by V1,” Vision Res. 37, 3311-3325 (1997). [CrossRef]
  68. E. P. Simoncelli, “Statistical models for images: compression, restoration and synthesis,” in 31st Asilomar Conference on Signals, Systems, and Computers (IEEE, 1997), pp. 673-678.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited