OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 4 — Apr. 23, 2008

Imaging interferometric microscopy

Yuliya Kuznetsova, Alexander Neumann, and Steven R.J. Brueck  »View Author Affiliations


JOSA A, Vol. 25, Issue 3, pp. 811-822 (2008)
http://dx.doi.org/10.1364/JOSAA.25.000811


View Full Text Article

Enhanced HTML    Acrobat PDF (1143 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Imaging interferometric microscopy (IIM) is a synthetic aperture imaging approach providing resolution to the transmission medium (refractive index n) linear systems limit extending to λ 4 n using only low-numerical-aperture (low- NA ) optics. IIM uses off-axis illumination to access high spatial frequencies along with interferometric reintroduction of a zero-order reference beam on the low- NA side of the optical system. For a thin object normal to the optical axis, the frequency space limit is [ ( 1 + NA ) n λ ] , while tilting the object plane allows collection of diffraction information up to the material transmission bandpass-limited spatial frequency of 2 n λ . Tilting transforms the spatial frequencies; the algorithm to reset to the correct image frequencies is described. IIM involves combining multiple subimages; the image reconstruction procedures are discussed. A mean-square-error metric is introduced. For binary objects, sigmoidal filtering of the image provides significant resolution improvement.

© 2008 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(180.3170) Microscopy : Interference microscopy
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Microscopy

History
Original Manuscript: September 13, 2007
Revised Manuscript: January 9, 2008
Manuscript Accepted: January 10, 2008
Published: February 25, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Yuliya Kuznetsova, Alexander Neumann, and Steven R. J. Brueck, "Imaging interferometric microscopy," J. Opt. Soc. Am. A 25, 811-822 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-25-3-811


Sort:  Year  |  Journal  |  Reset  

References

  1. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82-87 (2000). [CrossRef] [PubMed]
  2. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102, 13081-13086 (2005). [CrossRef] [PubMed]
  3. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780-782 (1994). [CrossRef] [PubMed]
  4. M. Dyba and S. W. Hell, “Focal spots of size λ/23 open up far-field florescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88, 016390 (2002). [CrossRef]
  5. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103, 11440-11445 (2006). [CrossRef] [PubMed]
  6. E. Abbé, “Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung,” Arch. Mikrosc. Anat. Entwicklungsmech. 9, 413-468 (1873). [CrossRef]
  7. W. Lukosz and M. Marchant, “Optischen Abbildung Unter Ueberschreitung der Beugungsbedingten Aufloesungsgrenze,” Opt. Acta 10, 241-255 (1963). [CrossRef]
  8. Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, 2002).
  9. Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, “Optical systems with improved resolving power,” in Progress in Optics, E.Wolf, ed. (Elsevier North-Holland, 1999), Vol. 15, Chap. 4.
  10. I. J. Cox and J. R. Sheppard, “Information capacity and resolution in an optical system,” J. Opt. Soc. Am. A 3, 1152-1158 (1986). [CrossRef]
  11. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit. II,” J. Opt. Soc. Am. 57, 932-941 (1967). [CrossRef]
  12. A. Shemer, D. Mendlovic, Z. Zalevsky, J. Garcia, and P. García-Martínez, “Superresolving optical system with time multiplexing and computer decoding,” Appl. Opt. 38, 7245-7251 (1999). [CrossRef]
  13. P. C. Sun and E. N. Leith, “Superresolution by spatial-temporal encoding methods,” Appl. Opt. 31, 4857-4862 (1992). [CrossRef] [PubMed]
  14. M. Françon, “Amélioration de la resolution d'optique,” Nuovo Cimento, Suppl. 9, 283-290 (1952). [CrossRef]
  15. A. W. Lohmann and D. P. Parish, “Superresolution for nonbirefringent objects,” Appl. Opt. 3, 1037-1043 (1964). [CrossRef]
  16. A. Zlotnik, Z. Zalevsky, and E. Marom, “Superresolution with nonorthogonal polarization coding,” Appl. Opt. 44, 3705-3715 (2005). [CrossRef] [PubMed]
  17. A. I. Kartashev, “Optical system with enhanced resolving power,” Opt. Spectrosc. 9, 204-206 (1960).
  18. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, “Imaging interferometric microscopy,” Opt. Lett. 28, 1424-1426 (2003). [CrossRef] [PubMed]
  19. S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, “Spatially resolved Fourier holographic light scattering angular spectroscopy,” Opt. Lett. 30, 3305-3307 (2005). [CrossRef]
  20. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006). [CrossRef] [PubMed]
  21. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Single-step superresolution by interferometric imaging,” Opt. Express 12, 2589-2595 (2004). [CrossRef] [PubMed]
  22. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822-826 (2006). [CrossRef] [PubMed]
  23. V. Mico, Z. Zalevsky, and J. Garcia, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168-5177 (2006). [CrossRef] [PubMed]
  24. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, “Imaging interferometric microscopy--approaching the linear systems limits of optical resolution,” Opt. Express 15, 6651-6663 (2007). [CrossRef] [PubMed]
  25. M. V. Klein and T. E. Furtak, Optics (Wiley, 1986).
  26. S. W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing, ISBN 0-7506-7444-X, retrieved February 2007, http://www.dspguide.com/ch11/4.htm.
  27. M. G. Moharam, E. B. Gramn, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995). [CrossRef]
  28. B. R. Frieden, Probability Statistical Optics and Data Testing (Springer-Verlag, 1983). [CrossRef]
  29. T. M. Tridhavee, B. Santhanam, and S. R. J. Brueck, “Optimal frequency coverages and parsings for imaging interferometric lithography,” J. Microlithogr., Microfabr., Microsyst. 4, 033005 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited