OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 8 — Aug. 18, 2008

Differences in temporal frequency tuning between the two binocular mechanisms for seeing motion in depth

Satoshi Shioiri, Tomohiko Nakajima, Daisuke Kakehi, and Hirohisa Yaguchi  »View Author Affiliations


JOSA A, Vol. 25, Issue 7, pp. 1574-1585 (2008)
http://dx.doi.org/10.1364/JOSAA.25.001574


View Full Text Article

Enhanced HTML    Acrobat PDF (935 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There are two types of binocular cues available for perception of motion in depth. One is the binocular disparity change in time and the other is the velocity difference between the left and the right retinal images (inter-ocular velocity differences). We measured the luminance contrast threshold for seeing motion in depth while isolating either of the cues at various temporal modulations of velocity in the stimulus. To isolate disparity cues, dynamic random-dot stereograms were used (the disparity condition) while binocularly uncorrelated random-dot kinematograms were used to isolate velocity cues (the velocity condition). Results showed that sensitivity peaked at a temporal frequency ( 1 cps ) in the velocity condition while the peak in the disparity condition was at the lowest frequency ( 0.35 cps ) or at least at a frequency lower than that in the velocity condition. This suggests that the visual system has different temporal frequency properties for the velocity and disparity cues for motion in depth.

© 2008 Optical Society of America

OCIS Codes
(330.1400) Vision, color, and visual optics : Vision - binocular and stereopsis
(330.4150) Vision, color, and visual optics : Motion detection
(330.5510) Vision, color, and visual optics : Psychophysics

ToC Category:
Vision, color, and visual optics

History
Original Manuscript: December 10, 2007
Revised Manuscript: April 3, 2008
Manuscript Accepted: April 17, 2008
Published: June 9, 2008

Virtual Issues
Vol. 3, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Satoshi Shioiri, Tomohiko Nakajima, Daisuke Kakehi, and Hirohisa Yaguchi, "Differences in temporal frequency tuning between the two binocular mechanisms for seeing motion in depth," J. Opt. Soc. Am. A 25, 1574-1585 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-25-7-1574


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. P. Howard and B. Rogers, Binocular Vision and Stereopsis (Oxford U. Press, 1995).
  2. D. Regan, “Depth from motion and motion-in-depth,” in Binocular Vision, D.Regan, ed. (MacMillan, 1991), pp. 137-160.
  3. S. Shioiri, A. Morinaga, and H. Yaguchi, “Depth perception of moving objects, ” in 3D Television, Video and Display Technology, B.Javidi and F.Okano, eds. (Springer-Verlag, 2002).
  4. A. M. Norcia, E. E. Sutter, and C. W. Tyler, “Electrophysiological evidence for the existence of coarse and fine disparity mechanisms in human,” Vision Res. 25, 1603-1611 (1985). [CrossRef] [PubMed]
  5. A. M. Norcia and C. W. Tyler, “Temporal frequency limits for stereoscopic apparent motion processes,” Vision Res. 24, 395-401 (1984). [CrossRef] [PubMed]
  6. B. Julesz, Foundations of Cyclopean Perception (University of Chicago Press, 1971).
  7. C. V. Portfors-Yeomans and D. Regan, “Cyclopean discrimination thresholds for the direction and speed of motion in depth,” Vision Res. 36, 3265-3279 (1996). [CrossRef] [PubMed]
  8. K. I. Beverley and D. Regan, “Selective adaptation in stereoscopic depth perception,” J. Physiol. (London) 232, 40P-41P (1973).
  9. B. G. Cumming and A. J. Parker, “Binocular mechanisms for detecting motion-in-depth,” Vision Res. 34, 483-495 (1994). [CrossRef] [PubMed]
  10. M. Maeda, M. Sato, T. Ohmura, Y. Miyazaki, A. H. Wang, and S. Awaya, “Binocular depth-from-motion in infantile and late-onset esotropia patients with poor stereopsis,” Invest. Ophthalmol. Visual Sci. 40, 3031-3036 (1999).
  11. D. Regan, “Binocular correlates of the direction of motion in depth,” Vision Res. 33, 2359-2360 (1993). [CrossRef] [PubMed]
  12. S. Shioiri, H. Saisho, and H. Yaguchi, “Motion in depth based on inter-ocular velocity differences,” Vision Res. 40, 2565-2572 (2000). [CrossRef] [PubMed]
  13. J. M. Harris and S. K. Rushton, “Poor visibility of motion in depth is due to early motion averaging,” Vision Res. 43, 385-392 (2003). [CrossRef] [PubMed]
  14. K. R. Brooks, “Monocular motion adaptation affects the perceived trajectory of stereomotion,” J. Exp. Psychol. Hum. Percept. Perform. 28, 1470-1482 (2002). [CrossRef]
  15. K. R. Brooks, “Interocular velocity difference contributes to stereomotion speed perception,” J. Vision 2, 218-231 (2002). [CrossRef]
  16. K. Brooks, “Stereomotion speed perception is contrast dependent,” Perception 30, 725-731 (2001). [CrossRef] [PubMed]
  17. J. M. Harris and V. F. Drga, “Using visual direction in three-dimensional motion perception,” Nat. Neurosci. 8, 229-233 (2005). [CrossRef] [PubMed]
  18. J. M. Fernandez and B. Farell, “Motion in depth from interocular velocity differences revealed by differential motion aftereffect,” Vision Res. 46, 1307-1317 (2006). [CrossRef]
  19. J. M. Fernandez and B. Farell, “Seeing motion in depth using inter-ocular velocity differences,” Vision Res. 45, 2786-2798 (2005). [CrossRef] [PubMed]
  20. S. Shioiri, D. Kakehi, T. Tashiro, and H. Yaguchi, “Investigating perception of motion in depth using monocular motion aftereffect,” presented at the Vision Sciences Society, Sarasota, Fla., May 13, 2003.
  21. J. M. Harris and S. N. Watamaniuk, “Speed discrimination of motion-in-depth using binocular cues,” Vision Res. 35, 885-896 (1995). [CrossRef] [PubMed]
  22. K. Brooks and G. Mather, “Perceived speed of motion in depth is reduced in the periphery,” Vision Res. 40, 3507-3516 (2000). [CrossRef] [PubMed]
  23. E. Akase, H. Inokawa, and K. Toyama, “Neuronal responsiveness to three-dimensional motion in cat posteromedial lateral suprasylvian cortex,” Exp. Brain Res. 122, 214-226 (1998). [CrossRef] [PubMed]
  24. M. Cynader and D. Regan, “Neurons in cat visual cortex tuned to the direction of motion in depth: Effect of positional disparity,” Vision Res. 22, 967-982 (1982). [CrossRef] [PubMed]
  25. G. F. Poggio and W. H. Talbot, “Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus monkey,” J. Physiol. (London) 315, 469-492 (1981).
  26. Y. Chen, Y. Wang, and N. Qian, “Modeling V1 disparity tuning to time-varying stimuli,” J. Neurophysiol. 86, 143-155 (2001). [PubMed]
  27. N. Qian, “Binocular disparity and the perception of depth,” Neuron 18, 359-368 (1997). [CrossRef] [PubMed]
  28. J. H. Maunsell and D. C. Van Essen, “Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity,” J. Neurophysiol. 49, 1148-1167 (1983). [PubMed]
  29. A. B. Watson and A. J. Ahumada, Jr., “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322-341 (1985). [CrossRef] [PubMed]
  30. E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284-299 (1985). [CrossRef] [PubMed]
  31. I. Ohzawa, “Mechanisms of stereoscopic vision: The disparity energy model,” Curr. Opin. Neurobiol. 8, 509-515 (1998). [CrossRef] [PubMed]
  32. I. Ohzawa, G. C. DeAngelis, and R. D. Freeman, “Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors,” Science 249, 1037-1041 (1990). [CrossRef] [PubMed]
  33. I. Ohzawa, G. C. DeAngelis, and R. D. Freeman, “Encoding of binocular disparity by complex cells in the cat's visual cortex,” J. Neurophysiol. 77, 2879-2909 (1997). [PubMed]
  34. K. I. Beverley and D. Regan, “Temporal integration of disparity information in stereoscopic perception,” Exp. Brain Res. 19, 228-232 (1974). [CrossRef] [PubMed]
  35. J. M. Foley and C. W. Tyler, “Effect of stimulus duration on stereo and vernier displacement thresholds,” Percept. Psychophys. 20, 125-128 (1976). [CrossRef]
  36. R. S. Harwerth and S. C. Rawlings, “Viewing time and stereoscopic threshold with random-dot stereograms,” Am. J. Optom. Physiol. Opt. 54, 452-457 (1977). [PubMed]
  37. S. Lee, S. Shioiri, and H. Yaguchi, “The effect of exposure duration on stereopsis and its dependency on spatial frequency,” Opt. Rev. 11, 256-264 (2004). [CrossRef]
  38. K. N. Ogle and M. P. Weil, “Stereoscopic vision and the duration of the stimulus,” AMA Arch. Ophthalmol. 59, 4-17 (1958). [CrossRef] [PubMed]
  39. R. Patterson, “Spatiotemporal properties of stereoacuity,” Optom. Vision Sci. 67, 123-128 (1990). [CrossRef]
  40. C. W. Tyler, “Cyclopean vision,” in Vision and Visual Dysfunction, Vol. 9, Binocular Vision, D.Regan, ed. (Macmillan, 1991), pp. 38-74.
  41. R. J. Watt, “Scanning from coarse to fine spatial scales in the human visual system after the onset of a stimulus,” J. Opt. Soc. Am. A 4, 2006-2021 (1987). [CrossRef] [PubMed]
  42. R. Patterson, R. Cayko, G. L. Short, R. Flanagan, L. Moe, E. Taylor, and P. Day, “Temporal integration differences between crossed and uncrossed stereoscopic mechanisms,” Percept. Psychophys. 57, 891-897 (1995). [CrossRef] [PubMed]
  43. C. W. Tyler, “Binocular cross-correlation in time and space,” Vision Res. 18, 101-105 (1978). [CrossRef] [PubMed]
  44. W. R. Uttal, N. S. Davis, and C. Welke, “Stereoscopic perception with brief exposures,” Percept. Psychophys. 56, 599-604 (1994). [CrossRef] [PubMed]
  45. B. Golomb, R. A. Andersen, K. Nakayama, D. I. MacLeod, and A. Wong, “Visual thresholds for shearing motion in monkey and man,” Vision Res. 25, 813-820 (1985). [CrossRef] [PubMed]
  46. S. Shioiri, S. Ito, K. Sakurai, and H. Yaguchi, “Detection of relative and uniform motion,” J. Opt. Soc. Am. A 19, 2169-2179 (2002). [CrossRef]
  47. S. Shioiri and P. Cavanagh, “Visual persistence of figures defined by relative motion,” Vision Res. 32, 943-951 (1992). [CrossRef] [PubMed]
  48. K. Nakayama and C. W. Tyler, “Psychophysical isolation of movement sensitivity by removal of familiar position cues,” Vision Res. 21, 427-433 (1981). [CrossRef] [PubMed]
  49. S. Nagata, “New versatile stereo (NS-type) disparity system and measurement of binocular depth perception,” J. Jpn. Soc. Med. Electron. Biol. Eng. 20, 154-161 (1982).
  50. D. Regan and K. I. Beverley, “Some dynamic features of depth perception,” Vision Res. 13, 2369-2379 (1973). [CrossRef] [PubMed]
  51. W. Richards, “Disparity masking,” Vision Res. 12, 1113-1124 (1972). [CrossRef] [PubMed]
  52. C. W. Tyler, “Stereoscopic depth movement: Two eyes less sensitive than one,” Science 174, 958-961 (1971). [CrossRef] [PubMed]
  53. M. Lages, P. Mamassian, and E. W. Graf, “Spatial and temporal tuning of motion in depth,” Vision Res. 43, 2861-2873 (2003). [CrossRef] [PubMed]
  54. C. W. Tyler, “Depth perception in disparity gratings,” Nature 251, 140-142 (1974). [CrossRef] [PubMed]
  55. D. Regan and K. I. Beverley, “Disparity detectors in human depth perception: Evidence for directional selectivity,” Science 181, 877-879 (1973). [CrossRef] [PubMed]
  56. L. Liu, C. W. Tyler, and C. M. Schor, “Failure of rivalry at low contrast: Evidence of a suprathreshold binocular summation process,” Vision Res. 32, 1471-1479 (1992). [CrossRef] [PubMed]
  57. K. R. Brooks and L. S. Stone, “Spatial scale of stereomotion speed processing,” J. Vision 6, 1257-1266 (2006). [CrossRef]
  58. C. J. Erkelens and H. Collewijn, “Motion perception during dichoptic viewing of moving random-dot stereograms,” Vision Res. 25, 583-588 (1985). [CrossRef] [PubMed]
  59. Y. Watanabe, T. Kezuka, K. Harasawa, M. Usui, H. Yaguchi, and S. Shioiri, “A new method for assessing motion-in-depth perception in strabismic patients,” Br. J. Ophthamol. 92, 47-50 (2008). [CrossRef]
  60. S. Lee, S. Shioiri, and H. Yaguchi, “Effects of temporal frequency and contrast on spatial frequency characteristics for disparity threshold,” Opt. Rev. 10, 120-123 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited