OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 9 — Sep. 8, 2008

Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries

Kevin J. Chalut, Michael G. Giacomelli, and Adam Wax  »View Author Affiliations


JOSA A, Vol. 25, Issue 8, pp. 1866-1874 (2008)
http://dx.doi.org/10.1364/JOSAA.25.001866


View Full Text Article

Enhanced HTML    Acrobat PDF (387 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Inverse light scattering analysis seeks to associate measured scattering properties with the most probable theoretical scattering distribution. Although Mie theory is a spherical scattering model, it has been used successfully for discerning the geometry of spheroidal scatterers. The goal of this study was an in-depth evaluation of the consequences of analyzing the structure of spheroidal geometries, which are relevant to cell and tissue studies in biology, by employing Mie-theory-based inverse light scattering analysis. As a basis for this study, the scattering from spheroidal geometries was modeled using T-matrix theory and used as test data. In a previous study, we used this technique to investigate the case of spheroidal scatterers aligned with the optical axis. In the present study, we look at a broader scope which includes the effects of aspect ratio, orientation, refractive index, and incident light polarization. Over this wide range of parameters, our results indicate that this method provides a good estimate of spheroidal structure.

© 2008 Optical Society of America

OCIS Codes
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.1350) Scattering : Backscattering
(290.3200) Scattering : Inverse scattering
(290.4020) Scattering : Mie theory

ToC Category:
Scattering

History
Original Manuscript: February 28, 2008
Revised Manuscript: May 16, 2008
Manuscript Accepted: May 16, 2008
Published: July 2, 2008

Virtual Issues
Vol. 3, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Kevin J. Chalut, Michael G. Giacomelli, and Adam Wax, "Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries," J. Opt. Soc. Am. A 25, 1866-1874 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-25-8-1866

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited