OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 9 — Sep. 8, 2008

Curvature-based perceptual singularities and texture saliency with early vision mechanisms

Guy Ben-Yosef and Ohad Ben-Shahar  »View Author Affiliations

JOSA A, Vol. 25, Issue 8, pp. 1974-1993 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (4923 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent work has shown that salient perceptual singularities occur in visual textures even in the absence of feature gradients. In smoothly varying orientation-defined textures, these striking non-smooth percepts can be predicted from two texture curvatures, one tangential and one normal [ Proc. Natl. Acad. Sci. USA 103, 15704 (2006) ]. We address the issue of detecting these perceptual singularities in a biologically plausible manner and present three different models to compute the tangential and normal curvatures using early cortical mechanisms. The first model relies on the response summation of similarly scaled even-symmetric simple cells at different positions by utilizing intercolumnar interactions in the primary visual cortex (V1). The second model is based on intracolumnar interactions in a two-layer mechanism of simple cells having the same orientation tuning but significantly different scales. Our third model uses a three-layer circuit in which both even-symmetric and odd-symmetric receptive fields (RFs) are used to compute all possible directional derivatives of the dominant orientation, from which the tangential and normal curvatures at each spatial position are selected using nonlinear shunting inhibition. We show experimental results of all three models, we outline an extension to oriented textures with multiple dominant orientations at each point, and we discuss how our results may be relevant to the processing of general textures.

© 2008 Optical Society of America

OCIS Codes
(330.4060) Vision, color, and visual optics : Vision modeling
(330.7310) Vision, color, and visual optics : Vision

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: December 21, 2007
Revised Manuscript: May 6, 2008
Manuscript Accepted: May 6, 2008
Published: July 11, 2008

Virtual Issues
Vol. 3, Iss. 9 Virtual Journal for Biomedical Optics

Guy Ben-Yosef and Ohad Ben-Shahar, "Curvature-based perceptual singularities and texture saliency with early vision mechanisms," J. Opt. Soc. Am. A 25, 1974-1993 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Beck, “Effect of orientation and the shape similarity on perceptual grouping,” Percept. Psychophys. 1, 300-302 (1966).
  2. R. Olson and F. Attneave, “What variables produce similarity grouping?” Am. J. Psychol. 83, 1-21 (1970). [CrossRef]
  3. B. Julesz, “Textons, the elements of texture perception, and their interactions,” Nature 290, 91-97 (1981). [CrossRef] [PubMed]
  4. H. Nothdurft, “The role of features in preattentive vision: Comparison of orientation, motion, and color cues,” Vision Res. 33, 1937-1958 (1993). [CrossRef] [PubMed]
  5. D. Sagi, “The psychophysics of texture segmentation,” in Early Vision and Beyond, T.Papathomas, C.Chubb, A.Gorea, and E.Kowler, eds. (MIT, 1995), pp. 69-78.
  6. J. Malik and P. Perona, “Preattentive texture discrimination with early vision mechanisms,” J. Opt. Soc. Am. A 7, 923-932 (1990). [CrossRef] [PubMed]
  7. O. Ben-Shahar, “Visual saliency and texture segregation without feature gradient,” Proc. Natl. Acad. Sci. U.S.A. 103, 15704-15709 (2006). [CrossRef] [PubMed]
  8. O. Ben-Shahar, “Saliency and segregation without feature gradient: New insights for segmentation from orientation-defined textures,” in The Fifth IEEE Computer Society Workshop on Perceptual Organization in Computer Vision (IEEE, 2006), pp. 175-182.
  9. O. Ben-Shahar and S. Zucker, “The perceptual organization of texture flows: A contextual inference approach,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 401-417 (2003). [CrossRef]
  10. M. Kass and A. Witkin, “Analyzing oriented patterns,” Comput. Vis. Graph. Image Process. 37, 362-385 (1987). [CrossRef]
  11. A. Rao and R. Jain, “Computerized flow field analysis: Oriented texture fields,” IEEE Trans. Pattern Anal. Mach. Intell. 17, 693-709 (1992). [CrossRef]
  12. B. O'Neill, Elementary Differential Geometry (Academic, 1966).
  13. M. do Carmo, Differential Geometry of Curves and Surfaces (Prentice-Hall, 1976).
  14. R. Haralik, “Ridges and valleys on digital images,” Comput. Vis. Graph. Image Process. 22, 28-38 (1983). [CrossRef]
  15. J. Koenderink and A. van Doorn, “Local features of smooth shapes: Ridges and courses,” Proc. SPIE 2031, 2-13 (1993). [CrossRef]
  16. A. López and J. Serrat, “Tracing crease curves by solving a system of differential equations,” in Proceedings of the European Conference on Computer Vision, Vol. 1064 of Lecture Notes in Computer Science (Springer-Verlag, 1996), pp. 241-250.
  17. J. Rieger, “Topographical properties of generic images,” Int. J. Comput. Vis. 23, 79-92 (1997). [CrossRef]
  18. J. Serrat, A. López, and D. Lloret, “On ridges and valleys,” in Proceedings of the 15th IEEE International Conference on Pattern Recognition (IEEE, 2000), pp. 59-66. [CrossRef]
  19. D. Eberly, Ridges in Image and Data Analysis (Kluwer Academic, 1996).
  20. O. Ben-Shahar and S. Zucker, “Geometrical computations explain projection patterns of long range horizontal connections in visual cortex,” Neural Comput. 16, 445-476 (2004). [CrossRef] [PubMed]
  21. A. Dobbins, S. Zucker, and M. Cynader, “Endstopped neurons in the visual cortex as a substrate for calculating curvature,” Nature 329, 438-441 (1987). [CrossRef] [PubMed]
  22. M. Versavel, G. Orban, and L. Lagae, “Responses of visual cortical neurons to curved stimuli and chevrons,” Vision Res. 30, 235-248 (1990). [CrossRef] [PubMed]
  23. J. Bergen and M. Landy, “Computational modeling of visual texture segregation,” in Computational Models of Visual Processing, M.Landy and J.Movshon, eds. (MIT, 1991), pp. 253-271.
  24. D. Hubel and T. Wiesel, “Functional architecture of macaque monkey visual cortex,” in Proc. R. Soc. London, Ser. B 198, 1-59 (1977). [CrossRef]
  25. W. Bosking, Y. Zhang, B. Schofield, and D. Fitzpatrick, “Orientation selectivity and the arrangement of horizontal connections in the tree shrew striate cortex,” J. Neurosci. 17, 2112-2127 (1997). [PubMed]
  26. M. Concetta Morrone and D. Burr, “Feature detection in human vision: A phase-dependent energy model,” Proc. R. Soc. London, Ser. B 235, 221-245 (1988). [CrossRef]
  27. V. Torre and T. Poggio, “A synaptic mechanism possibly underlying directional selectivity to motion,” Proc. R. Soc. London, Ser. B 202, 409-416 (1978). [CrossRef]
  28. C. Koch, T. Poggio, and V. Torre, “Nonlinear interactions in a dendritic tree: Localization, timing, and role in information processing,” Proc. Natl. Acad. Sci. U.S.A. 80, 2799-2802 (1983). [CrossRef] [PubMed]
  29. H. Barlow and W. Levick, “The mechanism of directionally selective units in rabbit's retina,” J. Physiol. (London) 178, 477-504 (1965).
  30. L. Borg-Graham, C. Monier, and Y. Frégnac, “Visual input evokes transient and strong shunting inhibition in visual cortical neurons,” Nature 393, 369-373 (1998). [CrossRef] [PubMed]
  31. Y. Frégnac, C. Monier, F. Chavane, P. Baudot, and L. Graham, “Shunting inhibition, a silent step in visual cortical computation,” J. Physiol. (Paris) 97, 441-451 (2003). [CrossRef]
  32. M. Riesenhuber and T. Poggio, “Hierarchical models of object recognition in cortex,” Nat. Neurosci. 2, 1019-1025 (1999). [CrossRef] [PubMed]
  33. I. Lampl, D. Ferster, T. Poggio, and M. Riesenhuber, “Intracellular measurements of spatial integration and the MAX operator in complex cells of the cat primary visual cortex,” J. Neurophysiol. 92, 2704-2713 (2004). [CrossRef] [PubMed]
  34. A. Yu, M. Gisse, and T. Poggio, “Biophysiologically plausible implementations of the maximum operation,” Neural Comput. 14, 2857-2881 (2002). [CrossRef] [PubMed]
  35. S. Wolfson and M. Landy, “Discrimination of oriention-defined texture edges,” Vision Res. 35, 2863-2877 (1995). [CrossRef] [PubMed]
  36. C. Gilbert, “Horizontal integration and cortical dynamics,” Neuron 9, 1-13 (1992). [CrossRef] [PubMed]
  37. R. Malach, Y. Amir, M. Harel, and A. Grinvald, “Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 90, 10469-10473 (1993). [CrossRef] [PubMed]
  38. K. Rockland and J. Lund, “Widespread periodic intrinsic connections in the tree shrew visual cortex,” Science 215, 1532-1534 (1982). [CrossRef] [PubMed]
  39. S. Dakin, C. Williams, and R. Hess, “The interaction of first- and second-order cues to orientation,” Vision Res. 39, 2867-2884 (1999). [CrossRef] [PubMed]
  40. H. Nothdurft, “Orientation sensitivity and texture segmentation in patterns with different line orientation,” Vision Res. 25, 551-560 (1985). [CrossRef] [PubMed]
  41. H. Nothdurft, “Texture segmentation and pop-out from orientation contrast,” Vision Res. 31, 1073-1078 (1991). [CrossRef] [PubMed]
  42. M. Landy and J. Bergen, “Texture segregation and orientation gradient,” Vision Res. 31, 679-691 (1991). [CrossRef] [PubMed]
  43. I. Motoyoshi and S. Nishida, “Visual response saturation to orientation constrast in the perception of texture boundary,” J. Opt. Soc. Am. A 18, 2209-2219 (2001). [CrossRef]
  44. O. Ben-Shahar and S. Zucker, “Sensitivity to curvatures in orientation-based texture segmentation,” Vision Res. 44, 257-277 (2004). [CrossRef]
  45. C. Baker and I. Mareschal, “Processing of second-order stimuli in the visual cortex,” Prog. Brain Res. 134, 171-191 (2001). [CrossRef] [PubMed]
  46. A. Mussap and D. Levi, “Orientation-based texture segmentation in strabismic amblyopia,” Vision Res. 39, 411-418 (1999). [CrossRef] [PubMed]
  47. N. Prins and F. Kingdom, “Detection and discrimination of texture modulations defined by orientation, spatial frequency, and contrast,” J. Opt. Soc. Am. A 20, 401-410 (2003). [CrossRef]
  48. A. Johnson, N. Prins, F. Kingdom, and C. Baker, “Ecologically valid combinations of first- and second-order surface markings facilitate texture discrimination,” Vision Res. 47, 2281-2290 (2007). [CrossRef] [PubMed]
  49. M. S. Landy and N. Graham, “Visual perception of texture,” in The Visual Neurosciences, L.M.Chalupa and J.S.Werner, eds. (MIT, 2004), pp. 1106-1118.
  50. H. Wilson and F. Wilkinson, “Detection of global structure in glass patterns: Implications for form vision,” Vision Res. 38, 2933-2947 (1998). [CrossRef] [PubMed]
  51. I. Mareschal and C. Baker, “A cortical locus for the processing of contrast-defined contours,” Nat. Neurosci. 1, 150-154 (1998). [CrossRef]
  52. F. Kingdom, N. Prins, and A. Hayes, “Mechanism independence for texture-modulations detection is consistent with filter-rectify-filter mechanism,” Visual Neurosci. 20, 65-76 (2003). [CrossRef]
  53. W. Richards, J. Keonderink, and D. Hoffman, “Inferring 3D shapes from 2D silhouettes,” J. Opt. Soc. Am. A 4, 1168-1175 (1987). [CrossRef]
  54. L. Strother and M. Kubovy, “On the surprising salience of curvature in grouping by proximity,” J. Exp. Psychol. 32, 226-234 (2006).
  55. H. Wilson and W. Richards, “Mechanisms of contour curvature discrimination,” J. Opt. Soc. Am. A 6, 106-115 (1989). [CrossRef] [PubMed]
  56. H. Nothdurft, J. Gallant, and D. Van Essen, “Response profiles to texture border patterns in area V1,” Visual Neurosci. 17, 421-436 (2000). [CrossRef]
  57. R. Oliveira, L. da Fondtoura Costa, and A. Roque, “A possible mechanism of curvature coding in early vision,” Neurocomputing 65-66, 117-124 (2005). [CrossRef]
  58. A. Angelucci and J. Bullier, “Reaching beyond the classical receptive field of V1 neurons: Horizontal or feedback axons?” J. Physiol. (Paris) 97, 141-154 (2003). [CrossRef]
  59. G. Kanizsa, Organization in Vision: Essays on Gestalt Perception (Praeger, 1979).
  60. K. Stevens, “The visual interpretation of surface contours,” Artif. Intell. 17, 47-73 (1981). [CrossRef]
  61. J. Todd and F. Reichel, “Visual perception of smoothly curved surfaces from double-projected contour patterns,” J. Exp. Psychol. 16, 665-674 (1990).
  62. B. Carbal and L. Leedom, “Imaging vector fields using line integral convolution,” in Proceedings of SIGGRAPH (ACMSIGGRAPH, 1993), pp. 263-270.
  63. A. Sha'ashua and S. Ullman, “Structural saliency: The detection of globally salient structures using a locally connected network,” in Proceedings of the Second IEEE International Conference on Computer Vision (IEEE, 1988), pp. 321-327. [CrossRef]
  64. D. Field, A. Hayes, and R. Hess, “Contour integration in the human visual system: Evidence for a local 'association' field,” Vision Res. 33, 173-193 (1993). [CrossRef] [PubMed]
  65. K. Schmidt, R. Goebel, S. Löwel, and W. Singer, “The perceptual grouping criterion of colinearity is reflected by anisotropies in the primary visual cortex,” Eur. J. Neurosci. 9, 1083-1089 (1997). [CrossRef] [PubMed]
  66. N. Fisher, Statistical Analysis of Circular Data (Cambridge U. Press, 1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited